| 1 | /* |
| 2 | * Copyright (C) 2006, 2008 Apple Inc. All rights reserved. |
| 3 | * Copyright (C) 2009 Google Inc. All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 15 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 18 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | */ |
| 26 | |
| 27 | #include "config.h" |
| 28 | #include "Timer.h" |
| 29 | |
| 30 | #include "RuntimeApplicationChecks.h" |
| 31 | #include "SharedTimer.h" |
| 32 | #include "ThreadGlobalData.h" |
| 33 | #include "ThreadTimers.h" |
| 34 | #include <limits.h> |
| 35 | #include <limits> |
| 36 | #include <math.h> |
| 37 | #include <wtf/MainThread.h> |
| 38 | #include <wtf/Vector.h> |
| 39 | |
| 40 | #if PLATFORM(IOS_FAMILY) || PLATFORM(MAC) |
| 41 | #include <wtf/spi/darwin/dyldSPI.h> |
| 42 | #endif |
| 43 | |
| 44 | namespace WebCore { |
| 45 | |
| 46 | class TimerHeapReference; |
| 47 | |
| 48 | // Timers are stored in a heap data structure, used to implement a priority queue. |
| 49 | // This allows us to efficiently determine which timer needs to fire the soonest. |
| 50 | // Then we set a single shared system timer to fire at that time. |
| 51 | // |
| 52 | // When a timer's "next fire time" changes, we need to move it around in the priority queue. |
| 53 | #if !ASSERT_DISABLED |
| 54 | static ThreadTimerHeap& threadGlobalTimerHeap() |
| 55 | { |
| 56 | return threadGlobalData().threadTimers().timerHeap(); |
| 57 | } |
| 58 | #endif |
| 59 | |
| 60 | inline ThreadTimerHeapItem::ThreadTimerHeapItem(TimerBase& timer, MonotonicTime time, unsigned insertionOrder) |
| 61 | : time(time) |
| 62 | , insertionOrder(insertionOrder) |
| 63 | , m_threadTimers(threadGlobalData().threadTimers()) |
| 64 | , m_timer(&timer) |
| 65 | { |
| 66 | ASSERT(m_timer); |
| 67 | } |
| 68 | |
| 69 | inline RefPtr<ThreadTimerHeapItem> ThreadTimerHeapItem::create(TimerBase& timer, MonotonicTime time, unsigned insertionOrder) |
| 70 | { |
| 71 | return adoptRef(*new ThreadTimerHeapItem { timer, time, insertionOrder }); |
| 72 | } |
| 73 | |
| 74 | // ---------------- |
| 75 | |
| 76 | class TimerHeapPointer { |
| 77 | public: |
| 78 | TimerHeapPointer(RefPtr<ThreadTimerHeapItem>* pointer) |
| 79 | : m_pointer(pointer) |
| 80 | { } |
| 81 | |
| 82 | TimerHeapReference operator*() const; |
| 83 | RefPtr<ThreadTimerHeapItem>& operator->() const { return *m_pointer; } |
| 84 | private: |
| 85 | RefPtr<ThreadTimerHeapItem>* m_pointer; |
| 86 | }; |
| 87 | |
| 88 | class TimerHeapReference { |
| 89 | public: |
| 90 | TimerHeapReference(RefPtr<ThreadTimerHeapItem>& reference) |
| 91 | : m_reference(reference) |
| 92 | { } |
| 93 | |
| 94 | TimerHeapReference(const TimerHeapReference& other) |
| 95 | : m_reference(other.m_reference) |
| 96 | { } |
| 97 | |
| 98 | operator RefPtr<ThreadTimerHeapItem>&() const { return m_reference; } |
| 99 | TimerHeapPointer operator&() const { return &m_reference; } |
| 100 | TimerHeapReference& operator=(TimerHeapReference&&); |
| 101 | TimerHeapReference& operator=(RefPtr<ThreadTimerHeapItem>&&); |
| 102 | |
| 103 | void swap(TimerHeapReference& other); |
| 104 | |
| 105 | void updateHeapIndex(); |
| 106 | |
| 107 | private: |
| 108 | RefPtr<ThreadTimerHeapItem>& m_reference; |
| 109 | |
| 110 | friend void swap(TimerHeapReference a, TimerHeapReference b); |
| 111 | }; |
| 112 | |
| 113 | inline TimerHeapReference TimerHeapPointer::operator*() const |
| 114 | { |
| 115 | return TimerHeapReference { *m_pointer }; |
| 116 | } |
| 117 | |
| 118 | inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference&& other) |
| 119 | { |
| 120 | m_reference = WTFMove(other.m_reference); |
| 121 | updateHeapIndex(); |
| 122 | return *this; |
| 123 | } |
| 124 | |
| 125 | inline TimerHeapReference& TimerHeapReference::operator=(RefPtr<ThreadTimerHeapItem>&& item) |
| 126 | { |
| 127 | m_reference = WTFMove(item); |
| 128 | updateHeapIndex(); |
| 129 | return *this; |
| 130 | } |
| 131 | |
| 132 | inline void TimerHeapReference::swap(TimerHeapReference& other) |
| 133 | { |
| 134 | m_reference.swap(other.m_reference); |
| 135 | updateHeapIndex(); |
| 136 | other.updateHeapIndex(); |
| 137 | } |
| 138 | |
| 139 | inline void TimerHeapReference::updateHeapIndex() |
| 140 | { |
| 141 | auto& heap = m_reference->timerHeap(); |
| 142 | if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size()) |
| 143 | m_reference->setHeapIndex(&m_reference - heap.data()); |
| 144 | } |
| 145 | |
| 146 | inline void swap(TimerHeapReference a, TimerHeapReference b) |
| 147 | { |
| 148 | a.swap(b); |
| 149 | } |
| 150 | |
| 151 | // ---------------- |
| 152 | |
| 153 | // Class to represent iterators in the heap when calling the standard library heap algorithms. |
| 154 | // Uses a custom pointer and reference type that update indices for pointers in the heap. |
| 155 | class TimerHeapIterator : public std::iterator<std::random_access_iterator_tag, RefPtr<ThreadTimerHeapItem>, ptrdiff_t, TimerHeapPointer, TimerHeapReference> { |
| 156 | public: |
| 157 | explicit TimerHeapIterator(RefPtr<ThreadTimerHeapItem>* pointer) : m_pointer(pointer) { checkConsistency(); } |
| 158 | |
| 159 | TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; } |
| 160 | TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); } |
| 161 | |
| 162 | TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; } |
| 163 | TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); } |
| 164 | |
| 165 | TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; } |
| 166 | TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; } |
| 167 | |
| 168 | TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); } |
| 169 | TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); } |
| 170 | RefPtr<ThreadTimerHeapItem>& operator->() const { return *m_pointer; } |
| 171 | |
| 172 | private: |
| 173 | void checkConsistency(ptrdiff_t offset = 0) const |
| 174 | { |
| 175 | ASSERT(m_pointer >= threadGlobalTimerHeap().data()); |
| 176 | ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); |
| 177 | ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data()); |
| 178 | ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); |
| 179 | } |
| 180 | |
| 181 | friend bool operator==(TimerHeapIterator, TimerHeapIterator); |
| 182 | friend bool operator!=(TimerHeapIterator, TimerHeapIterator); |
| 183 | friend bool operator<(TimerHeapIterator, TimerHeapIterator); |
| 184 | friend bool operator>(TimerHeapIterator, TimerHeapIterator); |
| 185 | friend bool operator<=(TimerHeapIterator, TimerHeapIterator); |
| 186 | friend bool operator>=(TimerHeapIterator, TimerHeapIterator); |
| 187 | |
| 188 | friend TimerHeapIterator operator+(TimerHeapIterator, size_t); |
| 189 | friend TimerHeapIterator operator+(size_t, TimerHeapIterator); |
| 190 | |
| 191 | friend TimerHeapIterator operator-(TimerHeapIterator, size_t); |
| 192 | friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator); |
| 193 | |
| 194 | RefPtr<ThreadTimerHeapItem>* m_pointer; |
| 195 | }; |
| 196 | |
| 197 | inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; } |
| 198 | inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; } |
| 199 | inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; } |
| 200 | inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; } |
| 201 | inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; } |
| 202 | inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; } |
| 203 | |
| 204 | inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); } |
| 205 | inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); } |
| 206 | |
| 207 | inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); } |
| 208 | inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; } |
| 209 | |
| 210 | // ---------------- |
| 211 | |
| 212 | class TimerHeapLessThanFunction { |
| 213 | public: |
| 214 | static bool compare(const TimerBase& a, const RefPtr<ThreadTimerHeapItem>& b) |
| 215 | { |
| 216 | return compare(a.m_heapItem->time, a.m_heapItem->insertionOrder, b->time, b->insertionOrder); |
| 217 | } |
| 218 | |
| 219 | static bool compare(const RefPtr<ThreadTimerHeapItem>& a, const TimerBase& b) |
| 220 | { |
| 221 | return compare(a->time, a->insertionOrder, b.m_heapItem->time, b.m_heapItem->insertionOrder); |
| 222 | } |
| 223 | |
| 224 | bool operator()(const RefPtr<ThreadTimerHeapItem>& a, const RefPtr<ThreadTimerHeapItem>& b) const |
| 225 | { |
| 226 | return compare(a->time, a->insertionOrder, b->time, b->insertionOrder); |
| 227 | } |
| 228 | |
| 229 | private: |
| 230 | static bool compare(MonotonicTime aTime, unsigned aOrder, MonotonicTime bTime, unsigned bOrder) |
| 231 | { |
| 232 | // The comparisons below are "backwards" because the heap puts the largest |
| 233 | // element first and we want the lowest time to be the first one in the heap. |
| 234 | if (bTime != aTime) |
| 235 | return bTime < aTime; |
| 236 | // We need to look at the difference of the insertion orders instead of comparing the two |
| 237 | // outright in case of overflow. |
| 238 | unsigned difference = aOrder - bOrder; |
| 239 | return difference < std::numeric_limits<unsigned>::max() / 2; |
| 240 | } |
| 241 | }; |
| 242 | |
| 243 | // ---------------- |
| 244 | |
| 245 | static bool shouldSuppressThreadSafetyCheck() |
| 246 | { |
| 247 | #if PLATFORM(IOS_FAMILY) |
| 248 | return WebThreadIsEnabled() || applicationSDKVersion() < DYLD_IOS_VERSION_12_0; |
| 249 | #elif PLATFORM(MAC) |
| 250 | return !isInWebProcess() && applicationSDKVersion() < DYLD_MACOSX_VERSION_10_14; |
| 251 | #else |
| 252 | return false; |
| 253 | #endif |
| 254 | } |
| 255 | |
| 256 | TimerBase::TimerBase() |
| 257 | { |
| 258 | } |
| 259 | |
| 260 | TimerBase::~TimerBase() |
| 261 | { |
| 262 | ASSERT(canAccessThreadLocalDataForThread(m_thread.get())); |
| 263 | RELEASE_ASSERT(canAccessThreadLocalDataForThread(m_thread.get()) || shouldSuppressThreadSafetyCheck()); |
| 264 | stop(); |
| 265 | ASSERT(!inHeap()); |
| 266 | if (m_heapItem) |
| 267 | m_heapItem->clearTimer(); |
| 268 | m_unalignedNextFireTime = MonotonicTime::nan(); |
| 269 | } |
| 270 | |
| 271 | void TimerBase::start(Seconds nextFireInterval, Seconds repeatInterval) |
| 272 | { |
| 273 | ASSERT(canAccessThreadLocalDataForThread(m_thread.get())); |
| 274 | |
| 275 | m_repeatInterval = repeatInterval; |
| 276 | setNextFireTime(MonotonicTime::now() + nextFireInterval); |
| 277 | } |
| 278 | |
| 279 | void TimerBase::stop() |
| 280 | { |
| 281 | ASSERT(canAccessThreadLocalDataForThread(m_thread.get())); |
| 282 | |
| 283 | m_repeatInterval = 0_s; |
| 284 | setNextFireTime(MonotonicTime { }); |
| 285 | |
| 286 | ASSERT(!static_cast<bool>(nextFireTime())); |
| 287 | ASSERT(m_repeatInterval == 0_s); |
| 288 | ASSERT(!inHeap()); |
| 289 | } |
| 290 | |
| 291 | Seconds TimerBase::nextFireInterval() const |
| 292 | { |
| 293 | ASSERT(isActive()); |
| 294 | ASSERT(m_heapItem); |
| 295 | MonotonicTime current = MonotonicTime::now(); |
| 296 | auto fireTime = nextFireTime(); |
| 297 | if (fireTime < current) |
| 298 | return 0_s; |
| 299 | return fireTime - current; |
| 300 | } |
| 301 | |
| 302 | inline void TimerBase::checkHeapIndex() const |
| 303 | { |
| 304 | #if !ASSERT_DISABLED |
| 305 | ASSERT(m_heapItem); |
| 306 | auto& heap = m_heapItem->timerHeap(); |
| 307 | ASSERT(&heap == &threadGlobalTimerHeap()); |
| 308 | ASSERT(!heap.isEmpty()); |
| 309 | ASSERT(m_heapItem->isInHeap()); |
| 310 | ASSERT(m_heapItem->heapIndex() < m_heapItem->timerHeap().size()); |
| 311 | ASSERT(heap[m_heapItem->heapIndex()] == m_heapItem); |
| 312 | for (unsigned i = 0, size = heap.size(); i < size; i++) |
| 313 | ASSERT(heap[i]->heapIndex() == i); |
| 314 | #endif |
| 315 | } |
| 316 | |
| 317 | inline void TimerBase::checkConsistency() const |
| 318 | { |
| 319 | // Timers should be in the heap if and only if they have a non-zero next fire time. |
| 320 | ASSERT(inHeap() == static_cast<bool>(nextFireTime())); |
| 321 | if (inHeap()) |
| 322 | checkHeapIndex(); |
| 323 | } |
| 324 | |
| 325 | void TimerBase::heapDecreaseKey() |
| 326 | { |
| 327 | ASSERT(static_cast<bool>(nextFireTime())); |
| 328 | ASSERT(m_heapItem); |
| 329 | checkHeapIndex(); |
| 330 | auto* heapData = m_heapItem->timerHeap().data(); |
| 331 | push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapItem->heapIndex() + 1), TimerHeapLessThanFunction()); |
| 332 | checkHeapIndex(); |
| 333 | } |
| 334 | |
| 335 | inline void TimerBase::heapDelete() |
| 336 | { |
| 337 | ASSERT(!static_cast<bool>(nextFireTime())); |
| 338 | heapPop(); |
| 339 | m_heapItem->timerHeap().removeLast(); |
| 340 | m_heapItem->setNotInHeap(); |
| 341 | } |
| 342 | |
| 343 | void TimerBase::heapDeleteMin() |
| 344 | { |
| 345 | ASSERT(!static_cast<bool>(nextFireTime())); |
| 346 | heapPopMin(); |
| 347 | m_heapItem->timerHeap().removeLast(); |
| 348 | m_heapItem->setNotInHeap(); |
| 349 | } |
| 350 | |
| 351 | inline void TimerBase::heapIncreaseKey() |
| 352 | { |
| 353 | ASSERT(static_cast<bool>(nextFireTime())); |
| 354 | heapPop(); |
| 355 | heapDecreaseKey(); |
| 356 | } |
| 357 | |
| 358 | inline void TimerBase::heapInsert() |
| 359 | { |
| 360 | ASSERT(!inHeap()); |
| 361 | ASSERT(m_heapItem); |
| 362 | auto& heap = m_heapItem->timerHeap(); |
| 363 | heap.append(m_heapItem.copyRef()); |
| 364 | m_heapItem->setHeapIndex(heap.size() - 1); |
| 365 | heapDecreaseKey(); |
| 366 | } |
| 367 | |
| 368 | inline void TimerBase::heapPop() |
| 369 | { |
| 370 | ASSERT(m_heapItem); |
| 371 | // Temporarily force this timer to have the minimum key so we can pop it. |
| 372 | MonotonicTime fireTime = m_heapItem->time; |
| 373 | m_heapItem->time = -MonotonicTime::infinity(); |
| 374 | heapDecreaseKey(); |
| 375 | heapPopMin(); |
| 376 | m_heapItem->time = fireTime; |
| 377 | } |
| 378 | |
| 379 | void TimerBase::heapPopMin() |
| 380 | { |
| 381 | ASSERT(m_heapItem == m_heapItem->timerHeap().first()); |
| 382 | checkHeapIndex(); |
| 383 | auto& heap = m_heapItem->timerHeap(); |
| 384 | auto* heapData = heap.data(); |
| 385 | pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction()); |
| 386 | checkHeapIndex(); |
| 387 | ASSERT(m_heapItem == m_heapItem->timerHeap().last()); |
| 388 | } |
| 389 | |
| 390 | void TimerBase::heapDeleteNullMin(ThreadTimerHeap& heap) |
| 391 | { |
| 392 | RELEASE_ASSERT(!heap.first()->hasTimer()); |
| 393 | heap.first()->time = -MonotonicTime::infinity(); |
| 394 | auto* heapData = heap.data(); |
| 395 | pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction()); |
| 396 | heap.removeLast(); |
| 397 | } |
| 398 | |
| 399 | static inline bool parentHeapPropertyHolds(const TimerBase* current, const ThreadTimerHeap& heap, unsigned currentIndex) |
| 400 | { |
| 401 | if (!currentIndex) |
| 402 | return true; |
| 403 | unsigned parentIndex = (currentIndex - 1) / 2; |
| 404 | return TimerHeapLessThanFunction::compare(*current, heap[parentIndex]); |
| 405 | } |
| 406 | |
| 407 | static inline bool childHeapPropertyHolds(const TimerBase* current, const ThreadTimerHeap& heap, unsigned childIndex) |
| 408 | { |
| 409 | if (childIndex >= heap.size()) |
| 410 | return true; |
| 411 | return TimerHeapLessThanFunction::compare(heap[childIndex], *current); |
| 412 | } |
| 413 | |
| 414 | bool TimerBase::hasValidHeapPosition() const |
| 415 | { |
| 416 | ASSERT(nextFireTime()); |
| 417 | ASSERT(m_heapItem); |
| 418 | if (!inHeap()) |
| 419 | return false; |
| 420 | // Check if the heap property still holds with the new fire time. If it does we don't need to do anything. |
| 421 | // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions |
| 422 | // in updateHeapIfNeeded() will get hit. |
| 423 | const auto& heap = m_heapItem->timerHeap(); |
| 424 | unsigned heapIndex = m_heapItem->heapIndex(); |
| 425 | if (!parentHeapPropertyHolds(this, heap, heapIndex)) |
| 426 | return false; |
| 427 | unsigned childIndex1 = 2 * heapIndex + 1; |
| 428 | unsigned childIndex2 = childIndex1 + 1; |
| 429 | return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2); |
| 430 | } |
| 431 | |
| 432 | void TimerBase::updateHeapIfNeeded(MonotonicTime oldTime) |
| 433 | { |
| 434 | auto fireTime = nextFireTime(); |
| 435 | if (fireTime && hasValidHeapPosition()) |
| 436 | return; |
| 437 | |
| 438 | #if !ASSERT_DISABLED |
| 439 | Optional<unsigned> oldHeapIndex; |
| 440 | if (m_heapItem->isInHeap()) |
| 441 | oldHeapIndex = m_heapItem->heapIndex(); |
| 442 | #endif |
| 443 | |
| 444 | if (!oldTime) |
| 445 | heapInsert(); |
| 446 | else if (!fireTime) |
| 447 | heapDelete(); |
| 448 | else if (fireTime < oldTime) |
| 449 | heapDecreaseKey(); |
| 450 | else |
| 451 | heapIncreaseKey(); |
| 452 | |
| 453 | #if !ASSERT_DISABLED |
| 454 | Optional<unsigned> newHeapIndex; |
| 455 | if (m_heapItem->isInHeap()) |
| 456 | newHeapIndex = m_heapItem->heapIndex(); |
| 457 | ASSERT(newHeapIndex != oldHeapIndex); |
| 458 | #endif |
| 459 | |
| 460 | ASSERT(!inHeap() || hasValidHeapPosition()); |
| 461 | } |
| 462 | |
| 463 | void TimerBase::setNextFireTime(MonotonicTime newTime) |
| 464 | { |
| 465 | ASSERT(canAccessThreadLocalDataForThread(m_thread.get())); |
| 466 | RELEASE_ASSERT(canAccessThreadLocalDataForThread(m_thread.get()) || shouldSuppressThreadSafetyCheck()); |
| 467 | bool timerHasBeenDeleted = std::isnan(m_unalignedNextFireTime); |
| 468 | RELEASE_ASSERT_WITH_SECURITY_IMPLICATION(!timerHasBeenDeleted); |
| 469 | |
| 470 | if (m_unalignedNextFireTime != newTime) { |
| 471 | RELEASE_ASSERT(!std::isnan(newTime)); |
| 472 | m_unalignedNextFireTime = newTime; |
| 473 | } |
| 474 | |
| 475 | // Keep heap valid while changing the next-fire time. |
| 476 | MonotonicTime oldTime = nextFireTime(); |
| 477 | // Don't realign zero-delay timers. |
| 478 | if (newTime) { |
| 479 | if (auto newAlignedTime = alignedFireTime(newTime)) |
| 480 | newTime = newAlignedTime.value(); |
| 481 | } |
| 482 | |
| 483 | if (oldTime != newTime) { |
| 484 | // FIXME: This should be part of ThreadTimers, or another per-thread structure. |
| 485 | static std::atomic<unsigned> currentHeapInsertionOrder; |
| 486 | auto newOrder = currentHeapInsertionOrder++; |
| 487 | |
| 488 | if (!m_heapItem) |
| 489 | m_heapItem = ThreadTimerHeapItem::create(*this, newTime, 0); |
| 490 | m_heapItem->time = newTime; |
| 491 | m_heapItem->insertionOrder = newOrder; |
| 492 | |
| 493 | bool wasFirstTimerInHeap = m_heapItem->isFirstInHeap(); |
| 494 | |
| 495 | updateHeapIfNeeded(oldTime); |
| 496 | |
| 497 | bool isFirstTimerInHeap = m_heapItem->isFirstInHeap(); |
| 498 | |
| 499 | if (wasFirstTimerInHeap || isFirstTimerInHeap) |
| 500 | threadGlobalData().threadTimers().updateSharedTimer(); |
| 501 | } |
| 502 | |
| 503 | checkConsistency(); |
| 504 | } |
| 505 | |
| 506 | void TimerBase::fireTimersInNestedEventLoop() |
| 507 | { |
| 508 | // Redirect to ThreadTimers. |
| 509 | threadGlobalData().threadTimers().fireTimersInNestedEventLoop(); |
| 510 | } |
| 511 | |
| 512 | void TimerBase::didChangeAlignmentInterval() |
| 513 | { |
| 514 | setNextFireTime(m_unalignedNextFireTime); |
| 515 | } |
| 516 | |
| 517 | Seconds TimerBase::nextUnalignedFireInterval() const |
| 518 | { |
| 519 | ASSERT(isActive()); |
| 520 | auto result = std::max(m_unalignedNextFireTime - MonotonicTime::now(), 0_s); |
| 521 | RELEASE_ASSERT(std::isfinite(result)); |
| 522 | return result; |
| 523 | } |
| 524 | |
| 525 | } // namespace WebCore |
| 526 | |
| 527 | |