1 | /* |
2 | * Copyright (C) 2018 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
14 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
15 | * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
17 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
18 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
19 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
20 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
21 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
22 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
23 | * THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "FloatingContext.h" |
28 | |
29 | #if ENABLE(LAYOUT_FORMATTING_CONTEXT) |
30 | |
31 | #include "DisplayBox.h" |
32 | #include "FloatAvoider.h" |
33 | #include "FloatBox.h" |
34 | #include "LayoutBox.h" |
35 | #include "LayoutContainer.h" |
36 | #include "LayoutState.h" |
37 | #include <wtf/IsoMallocInlines.h> |
38 | |
39 | namespace WebCore { |
40 | namespace Layout { |
41 | |
42 | WTF_MAKE_ISO_ALLOCATED_IMPL(FloatingContext); |
43 | |
44 | // Finding the top/left position for a new floating(F) |
45 | // ____ ____ _____ _______ |
46 | // | || L2 || | <-----1---->| | |
47 | // | ||____|| L3 | | R1 | |
48 | // | L1 | |_____| | | |
49 | // |____| <-------------2--------->| | |
50 | // | | |
51 | // |_______| |
52 | // |
53 | // 1. Compute the initial vertical position for (F) -> (1) |
54 | // 2. Find the corresponding floating pair (L3-R1) |
55 | // 3. Align (F) horizontally with (L3-R1) depending whether (F) is left/right positioned |
56 | // 4. Intersect (F) with (L3-R1) |
57 | // 5. If (F) does not fit, find the next floating pair (L1-R1) |
58 | // 6. Repeat until either (F) fits/no more floats. |
59 | // Note that all coordinates are in the coordinate system of the formatting root. |
60 | // The formatting root here is always the one that establishes the floating context (see inherited floating context). |
61 | // (It simply means that the float box's formatting root is not necessarily the same as the FormattingContext's root.) |
62 | |
63 | class Iterator; |
64 | |
65 | class FloatPair { |
66 | public: |
67 | struct LeftRightIndex { |
68 | bool isEmpty() const { return !left && !right;} |
69 | |
70 | Optional<unsigned> left; |
71 | Optional<unsigned> right; |
72 | }; |
73 | |
74 | bool isEmpty() const { return m_floatPair.isEmpty(); } |
75 | const FloatingState::FloatItem* left() const; |
76 | const FloatingState::FloatItem* right() const; |
77 | bool intersects(const Display::Box::Rect&) const; |
78 | PositionInContextRoot verticalConstraint() const { return m_verticalPosition; } |
79 | FloatAvoider::HorizontalConstraints horizontalConstraints() const; |
80 | PositionInContextRoot bottom() const; |
81 | LeftRightIndex operator*() const { return m_floatPair; }; |
82 | bool operator==(const FloatPair&) const; |
83 | |
84 | private: |
85 | friend class Iterator; |
86 | FloatPair(const FloatingState::FloatList&); |
87 | |
88 | const FloatingState::FloatList& m_floats; |
89 | LeftRightIndex m_floatPair; |
90 | PositionInContextRoot m_verticalPosition; |
91 | }; |
92 | |
93 | class Iterator { |
94 | public: |
95 | Iterator(const FloatingState::FloatList&, Optional<PositionInContextRoot> verticalPosition); |
96 | |
97 | const FloatPair& operator*() const { return m_current; } |
98 | Iterator& operator++(); |
99 | bool operator==(const Iterator&) const; |
100 | bool operator!=(const Iterator&) const; |
101 | |
102 | private: |
103 | void set(PositionInContextRoot verticalPosition); |
104 | |
105 | const FloatingState::FloatList& m_floats; |
106 | FloatPair m_current; |
107 | }; |
108 | |
109 | static Iterator begin(const FloatingState::FloatList& floats, PositionInContextRoot initialVerticalPosition) |
110 | { |
111 | // Start with the inner-most floating pair for the initial vertical position. |
112 | return Iterator(floats, initialVerticalPosition); |
113 | } |
114 | |
115 | static Iterator end(const FloatingState::FloatList& floats) |
116 | { |
117 | return Iterator(floats, { }); |
118 | } |
119 | |
120 | #ifndef NDEBUG |
121 | static bool areFloatsHorizontallySorted(const FloatingState& floatingState) |
122 | { |
123 | auto& floats = floatingState.floats(); |
124 | auto rightEdgeOfLeftFloats = LayoutUnit::min(); |
125 | auto leftEdgeOfRightFloats = LayoutUnit::max(); |
126 | WTF::Optional<LayoutUnit> leftBottom; |
127 | WTF::Optional<LayoutUnit> rightBottom; |
128 | |
129 | for (auto& floatItem : floats) { |
130 | if (floatItem.isLeftPositioned()) { |
131 | auto rightEdge = floatItem.rectWithMargin().right(); |
132 | if (rightEdge < rightEdgeOfLeftFloats) { |
133 | if (leftBottom && floatItem.rectWithMargin().top() < *leftBottom) |
134 | return false; |
135 | } |
136 | leftBottom = floatItem.rectWithMargin().bottom(); |
137 | rightEdgeOfLeftFloats = rightEdge; |
138 | } else { |
139 | auto leftEdge = floatItem.rectWithMargin().left(); |
140 | if (leftEdge > leftEdgeOfRightFloats) { |
141 | if (rightBottom && floatItem.rectWithMargin().top() < *rightBottom) |
142 | return false; |
143 | } |
144 | rightBottom = floatItem.rectWithMargin().bottom(); |
145 | leftEdgeOfRightFloats = leftEdge; |
146 | } |
147 | } |
148 | return true; |
149 | } |
150 | #endif |
151 | |
152 | FloatingContext::FloatingContext(FloatingState& floatingState) |
153 | : m_floatingState(floatingState) |
154 | { |
155 | } |
156 | |
157 | Point FloatingContext::positionForFloat(const Box& layoutBox) const |
158 | { |
159 | ASSERT(layoutBox.isFloatingPositioned()); |
160 | ASSERT(areFloatsHorizontallySorted(m_floatingState)); |
161 | |
162 | if (m_floatingState.isEmpty()) { |
163 | auto& displayBox = layoutState().displayBoxForLayoutBox(layoutBox); |
164 | |
165 | auto alignWithContainingBlock = [&]() -> Position { |
166 | // If there is no floating to align with, push the box to the left/right edge of its containing block's content box. |
167 | auto& containingBlockDisplayBox = layoutState().displayBoxForLayoutBox(*layoutBox.containingBlock()); |
168 | |
169 | if (layoutBox.isLeftFloatingPositioned()) |
170 | return Position { containingBlockDisplayBox.contentBoxLeft() + displayBox.marginStart() }; |
171 | |
172 | return Position { containingBlockDisplayBox.contentBoxRight() - displayBox.marginEnd() - displayBox.width() }; |
173 | }; |
174 | |
175 | // No float box on the context yet -> align it with the containing block's left/right edge. |
176 | return { alignWithContainingBlock(), displayBox.top() }; |
177 | } |
178 | |
179 | // Find the top most position where the float box fits. |
180 | FloatBox floatBox = { layoutBox, m_floatingState, layoutState() }; |
181 | findPositionForFloatBox(floatBox); |
182 | return floatBox.rectInContainingBlock().topLeft(); |
183 | } |
184 | |
185 | Optional<Point> FloatingContext::positionForFormattingContextRoot(const Box& layoutBox) const |
186 | { |
187 | ASSERT(layoutBox.establishesBlockFormattingContext()); |
188 | ASSERT(!layoutBox.isFloatingPositioned()); |
189 | ASSERT(!layoutBox.hasFloatClear()); |
190 | ASSERT(areFloatsHorizontallySorted(m_floatingState)); |
191 | |
192 | if (m_floatingState.isEmpty()) |
193 | return { }; |
194 | |
195 | FloatAvoider floatAvoider = { layoutBox, m_floatingState, layoutState() }; |
196 | findPositionForFormattingContextRoot(floatAvoider); |
197 | return { floatAvoider.rectInContainingBlock().topLeft() }; |
198 | } |
199 | |
200 | FloatingContext::ClearancePosition FloatingContext::verticalPositionWithClearance(const Box& layoutBox) const |
201 | { |
202 | ASSERT(layoutBox.hasFloatClear()); |
203 | ASSERT(layoutBox.isBlockLevelBox()); |
204 | ASSERT(areFloatsHorizontallySorted(m_floatingState)); |
205 | |
206 | if (m_floatingState.isEmpty()) |
207 | return { }; |
208 | |
209 | auto bottom = [&](Optional<PositionInContextRoot> floatBottom) -> ClearancePosition { |
210 | // 'bottom' is in the formatting root's coordinate system. |
211 | if (!floatBottom) |
212 | return { }; |
213 | |
214 | // 9.5.2 Controlling flow next to floats: the 'clear' property |
215 | // Then the amount of clearance is set to the greater of: |
216 | // |
217 | // 1. The amount necessary to place the border edge of the block even with the bottom outer edge of the lowest float that is to be cleared. |
218 | // 2. The amount necessary to place the top border edge of the block at its hypothetical position. |
219 | auto& layoutState = this->layoutState(); |
220 | auto rootRelativeTop = FormattingContext::mapTopToAncestor(layoutState, layoutBox, downcast<Container>(m_floatingState.root())); |
221 | auto clearance = *floatBottom - rootRelativeTop; |
222 | if (clearance <= 0) |
223 | return { }; |
224 | |
225 | // Clearance inhibits margin collapsing. |
226 | if (auto* previousInFlowSibling = layoutBox.previousInFlowSibling()) { |
227 | // Does this box with clearance actually collapse its margin before with the previous inflow box's margin after? |
228 | auto verticalMargin = layoutState.displayBoxForLayoutBox(layoutBox).verticalMargin(); |
229 | if (verticalMargin.hasCollapsedValues() && verticalMargin.collapsedValues().before) { |
230 | auto previousVerticalMargin = layoutState.displayBoxForLayoutBox(*previousInFlowSibling).verticalMargin(); |
231 | auto collapsedMargin = *verticalMargin.collapsedValues().before; |
232 | auto nonCollapsedMargin = previousVerticalMargin.after() + verticalMargin.before(); |
233 | auto marginDifference = nonCollapsedMargin - collapsedMargin; |
234 | // Move the box to the position where it would be with non-collapsed margins. |
235 | rootRelativeTop += marginDifference; |
236 | // Having negative clearance is also normal. It just means that the box with the non-collapsed margins is now lower than it needs to be. |
237 | clearance -= marginDifference; |
238 | } |
239 | } |
240 | // Now adjust the box's position with the clearance. |
241 | rootRelativeTop += clearance; |
242 | ASSERT(*floatBottom == rootRelativeTop); |
243 | |
244 | // The return vertical position is in the containing block's coordinate system. Convert it to the formatting root's coordinate system if needed. |
245 | if (layoutBox.containingBlock() == &m_floatingState.root()) |
246 | return { Position { rootRelativeTop }, clearance }; |
247 | |
248 | auto containingBlockRootRelativeTop = FormattingContext::mapTopToAncestor(layoutState, *layoutBox.containingBlock(), downcast<Container>(m_floatingState.root())); |
249 | return { Position { rootRelativeTop - containingBlockRootRelativeTop }, clearance }; |
250 | }; |
251 | |
252 | auto clear = layoutBox.style().clear(); |
253 | auto& formattingContextRoot = layoutBox.formattingContextRoot(); |
254 | |
255 | if (clear == Clear::Left) |
256 | return bottom(m_floatingState.leftBottom(formattingContextRoot)); |
257 | |
258 | if (clear == Clear::Right) |
259 | return bottom(m_floatingState.rightBottom(formattingContextRoot)); |
260 | |
261 | if (clear == Clear::Both) |
262 | return bottom(m_floatingState.bottom(formattingContextRoot)); |
263 | |
264 | ASSERT_NOT_REACHED(); |
265 | return { }; |
266 | } |
267 | |
268 | static FloatPair::LeftRightIndex findAvailablePosition(FloatAvoider& floatAvoider, const FloatingState::FloatList& floats) |
269 | { |
270 | Optional<PositionInContextRoot> bottomMost; |
271 | Optional<FloatPair::LeftRightIndex> innerMostLeftAndRight; |
272 | auto end = Layout::end(floats); |
273 | for (auto iterator = begin(floats, { floatAvoider.rect().top() }); iterator != end; ++iterator) { |
274 | ASSERT(!(*iterator).isEmpty()); |
275 | auto leftRightFloatPair = *iterator; |
276 | innerMostLeftAndRight = innerMostLeftAndRight.valueOr(*leftRightFloatPair); |
277 | |
278 | // Move the box horizontally so that it either |
279 | // 1. aligns with the current floating pair |
280 | // 2. or with the containing block's content box if there's no float to align with at this vertical position. |
281 | floatAvoider.setHorizontalConstraints(leftRightFloatPair.horizontalConstraints()); |
282 | floatAvoider.setVerticalConstraint(leftRightFloatPair.verticalConstraint()); |
283 | |
284 | // Ensure that the float avoider |
285 | // 1. does not "overflow" its containing block with the current horiztonal constraints. It simply means that the float avoider's |
286 | // containing block could push the candidate position beyond the current float horizontally (too far to the left/right) |
287 | // 2. avoids floats on both sides. |
288 | if (!floatAvoider.overflowsContainingBlock() && !leftRightFloatPair.intersects(floatAvoider.rect())) |
289 | return *innerMostLeftAndRight; |
290 | |
291 | bottomMost = leftRightFloatPair.bottom(); |
292 | // Move to the next floating pair. |
293 | } |
294 | |
295 | // The candidate box is already below of all the floats. |
296 | if (!bottomMost) |
297 | return { }; |
298 | |
299 | // Passed all the floats and still does not fit? Push it below the last float. |
300 | floatAvoider.setVerticalConstraint(*bottomMost); |
301 | floatAvoider.setHorizontalConstraints({ }); |
302 | ASSERT(innerMostLeftAndRight); |
303 | return *innerMostLeftAndRight; |
304 | } |
305 | |
306 | void FloatingContext::findPositionForFloatBox(FloatBox& floatBox) const |
307 | { |
308 | findAvailablePosition(floatBox, m_floatingState.floats()); |
309 | } |
310 | |
311 | void FloatingContext::findPositionForFormattingContextRoot(FloatAvoider& floatAvoider) const |
312 | { |
313 | // A non-floating formatting root's initial vertical position is its static position. |
314 | // It means that such boxes can end up vertically placed in-between existing floats (which is |
315 | // never the case for floats, since they cannot be placed above existing floats). |
316 | // ____ ____ |
317 | // | || F1 | |
318 | // | L1 | ---- |
319 | // | | ________ |
320 | // ---- | R1 | |
321 | // -------- |
322 | // Document order: 1. float: left (L1) 2. float: right (R1) 3. formatting root (F1) |
323 | // |
324 | // 1. Probe for available placement at initial position (note it runs a backward probing algorithm at a specific vertical position) |
325 | // 2. Check if there's any intersecing float below (forward seaching) |
326 | // 3. Align the box with the intersected float and probe for placement again (#1). |
327 | auto& floats = m_floatingState.floats(); |
328 | while (true) { |
329 | auto innerMostLeftAndRight = findAvailablePosition(floatAvoider, floats); |
330 | if (innerMostLeftAndRight.isEmpty()) |
331 | return; |
332 | |
333 | auto overlappingFloatBox = [&floats](auto startFloatIndex, auto floatAvoiderRect) -> const FloatingState::FloatItem* { |
334 | for (auto i = startFloatIndex; i < floats.size(); ++i) { |
335 | auto& floatBox = floats[i]; |
336 | if (floatBox.rectWithMargin().intersects(floatAvoiderRect)) |
337 | return &floatBox; |
338 | } |
339 | return nullptr; |
340 | }; |
341 | |
342 | auto startIndex = std::max(innerMostLeftAndRight.left.valueOr(0), innerMostLeftAndRight.right.valueOr(0)) + 1; |
343 | auto* intersectedFloatBox = overlappingFloatBox(startIndex, floatAvoider.rect()); |
344 | if (!intersectedFloatBox) |
345 | return; |
346 | floatAvoider.setVerticalConstraint({ intersectedFloatBox->rectWithMargin().top() }); |
347 | } |
348 | } |
349 | |
350 | FloatPair::FloatPair(const FloatingState::FloatList& floats) |
351 | : m_floats(floats) |
352 | { |
353 | } |
354 | |
355 | const FloatingState::FloatItem* FloatPair::left() const |
356 | { |
357 | if (!m_floatPair.left) |
358 | return nullptr; |
359 | |
360 | ASSERT(m_floats[*m_floatPair.left].isLeftPositioned()); |
361 | return &m_floats[*m_floatPair.left]; |
362 | } |
363 | |
364 | const FloatingState::FloatItem* FloatPair::right() const |
365 | { |
366 | if (!m_floatPair.right) |
367 | return nullptr; |
368 | |
369 | ASSERT(!m_floats[*m_floatPair.right].isLeftPositioned()); |
370 | return &m_floats[*m_floatPair.right]; |
371 | } |
372 | |
373 | bool FloatPair::intersects(const Display::Box::Rect& floatAvoiderRect) const |
374 | { |
375 | auto intersects = [&](auto* floating) { |
376 | return floating && floating->rectWithMargin().intersects(floatAvoiderRect); |
377 | }; |
378 | |
379 | ASSERT(!m_floatPair.isEmpty()); |
380 | return intersects(left()) || intersects(right()); |
381 | } |
382 | |
383 | bool FloatPair::operator ==(const FloatPair& other) const |
384 | { |
385 | return m_floatPair.left == other.m_floatPair.left && m_floatPair.right == other.m_floatPair.right; |
386 | } |
387 | |
388 | FloatAvoider::HorizontalConstraints FloatPair::horizontalConstraints() const |
389 | { |
390 | Optional<PositionInContextRoot> leftEdge; |
391 | Optional<PositionInContextRoot> rightEdge; |
392 | |
393 | if (left()) |
394 | leftEdge = PositionInContextRoot { left()->rectWithMargin().right() }; |
395 | |
396 | if (right()) |
397 | rightEdge = PositionInContextRoot { right()->rectWithMargin().left() }; |
398 | |
399 | return { leftEdge, rightEdge }; |
400 | } |
401 | |
402 | PositionInContextRoot FloatPair::bottom() const |
403 | { |
404 | auto* left = this->left(); |
405 | auto* right = this->right(); |
406 | ASSERT(left || right); |
407 | |
408 | auto leftBottom = left ? Optional<PositionInContextRoot>(PositionInContextRoot { left->rectWithMargin().bottom() }) : WTF::nullopt; |
409 | auto rightBottom = right ? Optional<PositionInContextRoot>(PositionInContextRoot { right->rectWithMargin().bottom() }) : WTF::nullopt; |
410 | |
411 | if (leftBottom && rightBottom) |
412 | return std::max(*leftBottom, *rightBottom); |
413 | |
414 | if (leftBottom) |
415 | return *leftBottom; |
416 | |
417 | return *rightBottom; |
418 | } |
419 | |
420 | Iterator::Iterator(const FloatingState::FloatList& floats, Optional<PositionInContextRoot> verticalPosition) |
421 | : m_floats(floats) |
422 | , m_current(floats) |
423 | { |
424 | if (verticalPosition) |
425 | set(*verticalPosition); |
426 | } |
427 | |
428 | inline static Optional<unsigned> previousFloatingIndex(Float floatingType, const FloatingState::FloatList& floats, unsigned currentIndex) |
429 | { |
430 | RELEASE_ASSERT(currentIndex <= floats.size()); |
431 | |
432 | while (currentIndex) { |
433 | auto& floating = floats[--currentIndex]; |
434 | if ((floatingType == Float::Left && floating.isLeftPositioned()) || (floatingType == Float::Right && !floating.isLeftPositioned())) |
435 | return currentIndex; |
436 | } |
437 | |
438 | return { }; |
439 | } |
440 | |
441 | Iterator& Iterator::operator++() |
442 | { |
443 | if (m_current.isEmpty()) { |
444 | ASSERT_NOT_REACHED(); |
445 | return *this; |
446 | } |
447 | |
448 | auto findPreviousFloatingWithLowerBottom = [&](Float floatingType, unsigned currentIndex) -> Optional<unsigned> { |
449 | |
450 | RELEASE_ASSERT(currentIndex < m_floats.size()); |
451 | |
452 | // Last floating? There's certainly no previous floating at this point. |
453 | if (!currentIndex) |
454 | return { }; |
455 | |
456 | auto currentBottom = m_floats[currentIndex].rectWithMargin().bottom(); |
457 | |
458 | Optional<unsigned> index = currentIndex; |
459 | while (true) { |
460 | index = previousFloatingIndex(floatingType, m_floats, *index); |
461 | if (!index) |
462 | return { }; |
463 | |
464 | if (m_floats[*index].rectWithMargin().bottom() > currentBottom) |
465 | return index; |
466 | } |
467 | |
468 | ASSERT_NOT_REACHED(); |
469 | return { }; |
470 | }; |
471 | |
472 | // 1. Take the current floating from left and right and check which one's bottom edge is positioned higher (they could be on the same vertical position too). |
473 | // The current floats from left and right are considered the inner-most pair for the current vertical position. |
474 | // 2. Move away from inner-most pair by picking one of the previous floats in the list(#1) |
475 | // Ensure that the new floating's bottom edge is positioned lower than the current one -which essentially means skipping in-between floats that are positioned higher). |
476 | // 3. Reset the vertical position and align it with the new left-right pair. These floats are now the inner-most boxes for the current vertical position. |
477 | // As the result we have more horizontal space on the current vertical position. |
478 | auto leftBottom = m_current.left() ? Optional<PositionInContextRoot>(m_current.left()->bottom()) : WTF::nullopt; |
479 | auto rightBottom = m_current.right() ? Optional<PositionInContextRoot>(m_current.right()->bottom()) : WTF::nullopt; |
480 | |
481 | auto updateLeft = (leftBottom == rightBottom) || (!rightBottom || (leftBottom && leftBottom < rightBottom)); |
482 | auto updateRight = (leftBottom == rightBottom) || (!leftBottom || (rightBottom && leftBottom > rightBottom)); |
483 | |
484 | if (updateLeft) { |
485 | ASSERT(m_current.m_floatPair.left); |
486 | m_current.m_verticalPosition = *leftBottom; |
487 | m_current.m_floatPair.left = findPreviousFloatingWithLowerBottom(Float::Left, *m_current.m_floatPair.left); |
488 | } |
489 | |
490 | if (updateRight) { |
491 | ASSERT(m_current.m_floatPair.right); |
492 | m_current.m_verticalPosition = *rightBottom; |
493 | m_current.m_floatPair.right = findPreviousFloatingWithLowerBottom(Float::Right, *m_current.m_floatPair.right); |
494 | } |
495 | |
496 | return *this; |
497 | } |
498 | |
499 | void Iterator::set(PositionInContextRoot verticalPosition) |
500 | { |
501 | // Move the iterator to the initial vertical position by starting at the inner-most floating pair (last floats on left/right). |
502 | // 1. Check if the inner-most pair covers the vertical position. |
503 | // 2. Move outwards from the inner-most pair until the vertical postion intersects. |
504 | m_current.m_verticalPosition = verticalPosition; |
505 | // No floats at all? |
506 | if (m_floats.isEmpty()) { |
507 | ASSERT_NOT_REACHED(); |
508 | m_current.m_floatPair = { }; |
509 | return; |
510 | } |
511 | |
512 | auto findFloatingBelow = [&](Float floatingType) -> Optional<unsigned> { |
513 | |
514 | ASSERT(!m_floats.isEmpty()); |
515 | |
516 | auto index = floatingType == Float::Left ? m_current.m_floatPair.left : m_current.m_floatPair.right; |
517 | // Start from the end if we don't have current yet. |
518 | index = index.valueOr(m_floats.size()); |
519 | while (true) { |
520 | index = previousFloatingIndex(floatingType, m_floats, *index); |
521 | if (!index) |
522 | return { }; |
523 | |
524 | // Is this floating intrusive on this position? |
525 | auto rect = m_floats[*index].rectWithMargin(); |
526 | if (rect.top() <= verticalPosition && rect.bottom() > verticalPosition) |
527 | return index; |
528 | } |
529 | |
530 | return { }; |
531 | }; |
532 | |
533 | m_current.m_floatPair.left = findFloatingBelow(Float::Left); |
534 | m_current.m_floatPair.right = findFloatingBelow(Float::Right); |
535 | |
536 | ASSERT(!m_current.m_floatPair.left || (*m_current.m_floatPair.left < m_floats.size() && m_floats[*m_current.m_floatPair.left].isLeftPositioned())); |
537 | ASSERT(!m_current.m_floatPair.right || (*m_current.m_floatPair.right < m_floats.size() && !m_floats[*m_current.m_floatPair.right].isLeftPositioned())); |
538 | } |
539 | |
540 | bool Iterator::operator==(const Iterator& other) const |
541 | { |
542 | return m_current == other.m_current; |
543 | } |
544 | |
545 | bool Iterator::operator!=(const Iterator& other) const |
546 | { |
547 | return !(*this == other); |
548 | } |
549 | |
550 | } |
551 | } |
552 | #endif |
553 | |