| 1 | /* |
| 2 | * Copyright (C) 2015 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| 14 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| 15 | * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| 17 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 18 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 19 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 20 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 21 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 22 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 23 | * THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "DFAMinimizer.h" |
| 28 | |
| 29 | #if ENABLE(CONTENT_EXTENSIONS) |
| 30 | |
| 31 | #include "DFA.h" |
| 32 | #include "DFANode.h" |
| 33 | #include "MutableRangeList.h" |
| 34 | #include <wtf/HashMap.h> |
| 35 | #include <wtf/Hasher.h> |
| 36 | #include <wtf/Vector.h> |
| 37 | |
| 38 | namespace WebCore { |
| 39 | namespace ContentExtensions { |
| 40 | |
| 41 | namespace { |
| 42 | |
| 43 | template<typename VectorType, typename Iterable, typename Function> |
| 44 | static inline void iterateIntersections(const VectorType& singularTransitionsFirsts, const Iterable& iterableTransitionList, const Function& intersectionHandler) |
| 45 | { |
| 46 | ASSERT(!singularTransitionsFirsts.isEmpty()); |
| 47 | auto otherIterator = iterableTransitionList.begin(); |
| 48 | auto otherEnd = iterableTransitionList.end(); |
| 49 | |
| 50 | if (otherIterator == otherEnd) |
| 51 | return; |
| 52 | |
| 53 | unsigned singularTransitionsLength = singularTransitionsFirsts.size(); |
| 54 | unsigned singularTransitionsFirstsIndex = 0; |
| 55 | for (; otherIterator != otherEnd; ++otherIterator) { |
| 56 | auto firstCharacter = otherIterator.first(); |
| 57 | while (singularTransitionsFirstsIndex < singularTransitionsLength |
| 58 | && singularTransitionsFirsts[singularTransitionsFirstsIndex] != firstCharacter) |
| 59 | ++singularTransitionsFirstsIndex; |
| 60 | |
| 61 | intersectionHandler(singularTransitionsFirstsIndex, otherIterator); |
| 62 | ++singularTransitionsFirstsIndex; |
| 63 | |
| 64 | auto lastCharacter = otherIterator.last(); |
| 65 | while (singularTransitionsFirstsIndex < singularTransitionsLength |
| 66 | && singularTransitionsFirsts[singularTransitionsFirstsIndex] <= lastCharacter) { |
| 67 | intersectionHandler(singularTransitionsFirstsIndex, otherIterator); |
| 68 | ++singularTransitionsFirstsIndex; |
| 69 | } |
| 70 | } |
| 71 | } |
| 72 | |
| 73 | class Partition { |
| 74 | public: |
| 75 | void initialize(unsigned size) |
| 76 | { |
| 77 | if (!size) |
| 78 | return; |
| 79 | |
| 80 | m_sets.reserveInitialCapacity(size); |
| 81 | m_partitionedElements.resize(size); |
| 82 | m_elementPositionInPartitionedNodes.resize(size); |
| 83 | m_elementToSetMap.resize(size); |
| 84 | |
| 85 | for (unsigned i = 0; i < size; ++i) { |
| 86 | m_partitionedElements[i] = i; |
| 87 | m_elementPositionInPartitionedNodes[i] = i; |
| 88 | m_elementToSetMap[i] = 0; |
| 89 | } |
| 90 | m_sets.uncheckedAppend(SetDescriptor { 0, size, 0 }); |
| 91 | } |
| 92 | |
| 93 | void reserveUninitializedCapacity(unsigned elementCount) |
| 94 | { |
| 95 | m_partitionedElements.resize(elementCount); |
| 96 | m_elementPositionInPartitionedNodes.resize(elementCount); |
| 97 | m_elementToSetMap.resize(elementCount); |
| 98 | } |
| 99 | |
| 100 | void addSetUnchecked(unsigned start, unsigned size) |
| 101 | { |
| 102 | m_sets.append(SetDescriptor { start, size, 0 }); |
| 103 | } |
| 104 | |
| 105 | void setElementUnchecked(unsigned elementIndex, unsigned positionInPartition, unsigned setIndex) |
| 106 | { |
| 107 | ASSERT(setIndex < m_sets.size()); |
| 108 | m_partitionedElements[positionInPartition] = elementIndex; |
| 109 | m_elementPositionInPartitionedNodes[elementIndex] = positionInPartition; |
| 110 | m_elementToSetMap[elementIndex] = setIndex; |
| 111 | } |
| 112 | |
| 113 | unsigned startOffsetOfSet(unsigned setIndex) const |
| 114 | { |
| 115 | return m_sets[setIndex].start; |
| 116 | } |
| 117 | |
| 118 | ALWAYS_INLINE void markElementInCurrentGeneration(unsigned elementIndex) |
| 119 | { |
| 120 | // Swap the node with the first unmarked node. |
| 121 | unsigned setIndex = m_elementToSetMap[elementIndex]; |
| 122 | SetDescriptor& setDescriptor = m_sets[setIndex]; |
| 123 | |
| 124 | unsigned elementPositionInPartition = m_elementPositionInPartitionedNodes[elementIndex]; |
| 125 | ASSERT(elementPositionInPartition >= setDescriptor.start); |
| 126 | ASSERT(elementPositionInPartition < setDescriptor.end()); |
| 127 | |
| 128 | unsigned firstUnmarkedElementPositionInPartition = setDescriptor.indexAfterMarkedElements(); |
| 129 | ASSERT(firstUnmarkedElementPositionInPartition >= setDescriptor.start && firstUnmarkedElementPositionInPartition < setDescriptor.end()); |
| 130 | ASSERT(firstUnmarkedElementPositionInPartition >= firstUnmarkedElementPositionInPartition); |
| 131 | |
| 132 | // Swap the nodes in the set. |
| 133 | unsigned firstUnmarkedElement = m_partitionedElements[firstUnmarkedElementPositionInPartition]; |
| 134 | m_partitionedElements[firstUnmarkedElementPositionInPartition] = elementIndex; |
| 135 | m_partitionedElements[elementPositionInPartition] = firstUnmarkedElement; |
| 136 | |
| 137 | // Update their index. |
| 138 | m_elementPositionInPartitionedNodes[elementIndex] = firstUnmarkedElementPositionInPartition; |
| 139 | m_elementPositionInPartitionedNodes[firstUnmarkedElement] = elementPositionInPartition; |
| 140 | |
| 141 | if (!setDescriptor.markedCount) { |
| 142 | ASSERT(!m_setsMarkedInCurrentGeneration.contains(setIndex)); |
| 143 | m_setsMarkedInCurrentGeneration.append(setIndex); |
| 144 | } |
| 145 | ++setDescriptor.markedCount; |
| 146 | } |
| 147 | |
| 148 | // The function passed as argument MUST not modify the partition. |
| 149 | template<typename Function> |
| 150 | void refineGeneration(const Function& function) |
| 151 | { |
| 152 | for (unsigned setIndex : m_setsMarkedInCurrentGeneration) { |
| 153 | SetDescriptor& setDescriptor = m_sets[setIndex]; |
| 154 | if (setDescriptor.markedCount == setDescriptor.size) { |
| 155 | // Everything is marked, there is nothing to refine. |
| 156 | setDescriptor.markedCount = 0; |
| 157 | continue; |
| 158 | } |
| 159 | |
| 160 | SetDescriptor newSet; |
| 161 | bool newSetIsMarkedSet = setDescriptor.markedCount * 2 <= setDescriptor.size; |
| 162 | if (newSetIsMarkedSet) { |
| 163 | // Less than half of the nodes have been marked. |
| 164 | newSet = { setDescriptor.start, setDescriptor.markedCount, 0 }; |
| 165 | setDescriptor.start = setDescriptor.start + setDescriptor.markedCount; |
| 166 | } else |
| 167 | newSet = { setDescriptor.start + setDescriptor.markedCount, setDescriptor.size - setDescriptor.markedCount, 0 }; |
| 168 | setDescriptor.size -= newSet.size; |
| 169 | setDescriptor.markedCount = 0; |
| 170 | |
| 171 | unsigned newSetIndex = m_sets.size(); |
| 172 | m_sets.append(newSet); |
| 173 | |
| 174 | for (unsigned i = newSet.start; i < newSet.end(); ++i) |
| 175 | m_elementToSetMap[m_partitionedElements[i]] = newSetIndex; |
| 176 | |
| 177 | function(newSetIndex); |
| 178 | } |
| 179 | m_setsMarkedInCurrentGeneration.clear(); |
| 180 | } |
| 181 | |
| 182 | // Call Function() on every node of a given subset. |
| 183 | template<typename Function> |
| 184 | void iterateSet(unsigned setIndex, const Function& function) |
| 185 | { |
| 186 | SetDescriptor& setDescriptor = m_sets[setIndex]; |
| 187 | for (unsigned i = setDescriptor.start; i < setDescriptor.end(); ++i) |
| 188 | function(m_partitionedElements[i]); |
| 189 | } |
| 190 | |
| 191 | // Index of the set containing the Node. |
| 192 | unsigned setIndex(unsigned elementIndex) const |
| 193 | { |
| 194 | return m_elementToSetMap[elementIndex]; |
| 195 | } |
| 196 | |
| 197 | // NodeIndex of the first element in the set. |
| 198 | unsigned firstElementInSet(unsigned setIndex) const |
| 199 | { |
| 200 | return m_partitionedElements[m_sets[setIndex].start]; |
| 201 | } |
| 202 | |
| 203 | unsigned size() const |
| 204 | { |
| 205 | return m_sets.size(); |
| 206 | } |
| 207 | |
| 208 | private: |
| 209 | struct SetDescriptor { |
| 210 | unsigned start; |
| 211 | unsigned size; |
| 212 | unsigned markedCount; |
| 213 | |
| 214 | unsigned indexAfterMarkedElements() const { return start + markedCount; } |
| 215 | unsigned end() const { return start + size; } |
| 216 | }; |
| 217 | |
| 218 | // List of sets. |
| 219 | Vector<SetDescriptor, 0, ContentExtensionsOverflowHandler> m_sets; |
| 220 | |
| 221 | // All the element indices such that two elements of the same set never have a element of a different set between them. |
| 222 | Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_partitionedElements; |
| 223 | |
| 224 | // Map elementIndex->position in the partitionedElements. |
| 225 | Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_elementPositionInPartitionedNodes; |
| 226 | |
| 227 | // Map elementIndex->SetIndex. |
| 228 | Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_elementToSetMap; |
| 229 | |
| 230 | // List of sets with any marked node. Each set can appear at most once. |
| 231 | // FIXME: find a good inline size for this. |
| 232 | Vector<unsigned, 128, ContentExtensionsOverflowHandler> m_setsMarkedInCurrentGeneration; |
| 233 | }; |
| 234 | |
| 235 | class FullGraphPartition { |
| 236 | typedef MutableRangeList<char, uint32_t, 128> SingularTransitionsMutableRangeList; |
| 237 | public: |
| 238 | FullGraphPartition(const DFA& dfa) |
| 239 | { |
| 240 | m_nodePartition.initialize(dfa.nodes.size()); |
| 241 | |
| 242 | SingularTransitionsMutableRangeList singularTransitions; |
| 243 | CounterConverter counterConverter; |
| 244 | for (const DFANode& node : dfa.nodes) { |
| 245 | if (node.isKilled()) |
| 246 | continue; |
| 247 | auto transitions = node.transitions(dfa); |
| 248 | singularTransitions.extend(transitions.begin(), transitions.end(), counterConverter); |
| 249 | } |
| 250 | |
| 251 | // Count the number of transition for each singular range. This will give us the bucket size |
| 252 | // for the transition partition, where transitions are partitioned by "symbol". |
| 253 | unsigned rangeIndexAccumulator = 0; |
| 254 | for (const auto& transition : singularTransitions) { |
| 255 | m_transitionPartition.addSetUnchecked(rangeIndexAccumulator, transition.data); |
| 256 | rangeIndexAccumulator += transition.data; |
| 257 | } |
| 258 | |
| 259 | // Count the number of incoming transitions per node. |
| 260 | m_flattenedTransitionsStartOffsetPerNode.resize(dfa.nodes.size()); |
| 261 | memset(m_flattenedTransitionsStartOffsetPerNode.data(), 0, m_flattenedTransitionsStartOffsetPerNode.size() * sizeof(unsigned)); |
| 262 | |
| 263 | Vector<char, 0, ContentExtensionsOverflowHandler> singularTransitionsFirsts; |
| 264 | singularTransitionsFirsts.reserveInitialCapacity(singularTransitions.m_ranges.size()); |
| 265 | for (const auto& transition : singularTransitions) |
| 266 | singularTransitionsFirsts.uncheckedAppend(transition.first); |
| 267 | |
| 268 | for (const DFANode& node : dfa.nodes) { |
| 269 | if (node.isKilled()) |
| 270 | continue; |
| 271 | auto transitions = node.transitions(dfa); |
| 272 | iterateIntersections(singularTransitionsFirsts, transitions, [&](unsigned, const DFANode::ConstRangeIterator& origin) { |
| 273 | uint32_t targetNodeIndex = origin.target(); |
| 274 | ++m_flattenedTransitionsStartOffsetPerNode[targetNodeIndex]; |
| 275 | }); |
| 276 | } |
| 277 | |
| 278 | // Accumulate the offsets. This gives us the start position of each bucket. |
| 279 | unsigned transitionAccumulator = 0; |
| 280 | for (unsigned i = 0; i < m_flattenedTransitionsStartOffsetPerNode.size(); ++i) { |
| 281 | unsigned transitionsCountForNode = m_flattenedTransitionsStartOffsetPerNode[i]; |
| 282 | m_flattenedTransitionsStartOffsetPerNode[i] = transitionAccumulator; |
| 283 | transitionAccumulator += transitionsCountForNode; |
| 284 | } |
| 285 | unsigned flattenedTransitionsSize = transitionAccumulator; |
| 286 | ASSERT_WITH_MESSAGE(flattenedTransitionsSize == rangeIndexAccumulator, "The number of transitions should be the same, regardless of how they are arranged in buckets." ); |
| 287 | |
| 288 | m_transitionPartition.reserveUninitializedCapacity(flattenedTransitionsSize); |
| 289 | |
| 290 | // Next, let's fill the transition table and set up the size of each group at the same time. |
| 291 | m_flattenedTransitionsSizePerNode.resize(dfa.nodes.size()); |
| 292 | for (unsigned& counter : m_flattenedTransitionsSizePerNode) |
| 293 | counter = 0; |
| 294 | m_flattenedTransitions.resize(flattenedTransitionsSize); |
| 295 | |
| 296 | Vector<uint32_t> transitionPerRangeOffset(m_transitionPartition.size()); |
| 297 | memset(transitionPerRangeOffset.data(), 0, transitionPerRangeOffset.size() * sizeof(uint32_t)); |
| 298 | |
| 299 | for (unsigned i = 0; i < dfa.nodes.size(); ++i) { |
| 300 | const DFANode& node = dfa.nodes[i]; |
| 301 | if (node.isKilled()) |
| 302 | continue; |
| 303 | |
| 304 | auto transitions = node.transitions(dfa); |
| 305 | iterateIntersections(singularTransitionsFirsts, transitions, [&](unsigned singularTransitonIndex, const DFANode::ConstRangeIterator& origin) { |
| 306 | uint32_t targetNodeIndex = origin.target(); |
| 307 | |
| 308 | unsigned start = m_flattenedTransitionsStartOffsetPerNode[targetNodeIndex]; |
| 309 | unsigned offset = m_flattenedTransitionsSizePerNode[targetNodeIndex]; |
| 310 | unsigned positionInFlattenedTransitions = start + offset; |
| 311 | m_flattenedTransitions[positionInFlattenedTransitions] = Transition({ i }); |
| 312 | |
| 313 | uint32_t& inRangeOffset = transitionPerRangeOffset[singularTransitonIndex]; |
| 314 | unsigned positionInTransitionPartition = m_transitionPartition.startOffsetOfSet(singularTransitonIndex) + inRangeOffset; |
| 315 | ++inRangeOffset; |
| 316 | |
| 317 | m_transitionPartition.setElementUnchecked(positionInFlattenedTransitions, positionInTransitionPartition, singularTransitonIndex); |
| 318 | |
| 319 | ++m_flattenedTransitionsSizePerNode[targetNodeIndex]; |
| 320 | }); |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | void markNode(unsigned nodeIndex) |
| 325 | { |
| 326 | m_nodePartition.markElementInCurrentGeneration(nodeIndex); |
| 327 | } |
| 328 | |
| 329 | void refinePartitions() |
| 330 | { |
| 331 | m_nodePartition.refineGeneration([&](unsigned smallestSetIndex) { |
| 332 | m_nodePartition.iterateSet(smallestSetIndex, [&](unsigned nodeIndex) { |
| 333 | unsigned incomingTransitionsStartForNode = m_flattenedTransitionsStartOffsetPerNode[nodeIndex]; |
| 334 | unsigned incomingTransitionsSizeForNode = m_flattenedTransitionsSizePerNode[nodeIndex]; |
| 335 | |
| 336 | for (unsigned i = 0; i < incomingTransitionsSizeForNode; ++i) |
| 337 | m_transitionPartition.markElementInCurrentGeneration(incomingTransitionsStartForNode + i); |
| 338 | }); |
| 339 | |
| 340 | // We only need to split the transitions, we handle the new sets through the main loop. |
| 341 | m_transitionPartition.refineGeneration([](unsigned) { }); |
| 342 | }); |
| 343 | } |
| 344 | |
| 345 | void splitByUniqueTransitions() |
| 346 | { |
| 347 | for (; m_nextTransitionSetToProcess < m_transitionPartition.size(); ++m_nextTransitionSetToProcess) { |
| 348 | // We use the known splitters to refine the set. |
| 349 | m_transitionPartition.iterateSet(m_nextTransitionSetToProcess, [&](unsigned transitionIndex) { |
| 350 | unsigned sourceNodeIndex = m_flattenedTransitions[transitionIndex].source; |
| 351 | m_nodePartition.markElementInCurrentGeneration(sourceNodeIndex); |
| 352 | }); |
| 353 | |
| 354 | refinePartitions(); |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | unsigned nodeReplacement(unsigned nodeIndex) |
| 359 | { |
| 360 | unsigned setIndex = m_nodePartition.setIndex(nodeIndex); |
| 361 | return m_nodePartition.firstElementInSet(setIndex); |
| 362 | } |
| 363 | |
| 364 | private: |
| 365 | struct Transition { |
| 366 | unsigned source; |
| 367 | }; |
| 368 | |
| 369 | struct CounterConverter { |
| 370 | uint32_t convert(uint32_t) |
| 371 | { |
| 372 | return 1; |
| 373 | } |
| 374 | |
| 375 | void extend(uint32_t& destination, uint32_t) |
| 376 | { |
| 377 | ++destination; |
| 378 | } |
| 379 | }; |
| 380 | |
| 381 | Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_flattenedTransitionsStartOffsetPerNode; |
| 382 | Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_flattenedTransitionsSizePerNode; |
| 383 | Vector<Transition, 0, ContentExtensionsOverflowHandler> m_flattenedTransitions; |
| 384 | |
| 385 | Partition m_nodePartition; |
| 386 | Partition m_transitionPartition; |
| 387 | |
| 388 | unsigned m_nextTransitionSetToProcess { 0 }; |
| 389 | }; |
| 390 | |
| 391 | struct ActionKey { |
| 392 | enum DeletedValueTag { DeletedValue }; |
| 393 | explicit ActionKey(DeletedValueTag) { state = Deleted; } |
| 394 | |
| 395 | enum EmptyValueTag { EmptyValue }; |
| 396 | explicit ActionKey(EmptyValueTag) { state = Empty; } |
| 397 | |
| 398 | explicit ActionKey(const DFA* dfa, uint32_t actionsStart, uint16_t actionsLength) |
| 399 | : dfa(dfa) |
| 400 | , actionsStart(actionsStart) |
| 401 | , actionsLength(actionsLength) |
| 402 | , state(Valid) |
| 403 | { |
| 404 | StringHasher hasher; |
| 405 | hasher.addCharactersAssumingAligned(reinterpret_cast<const UChar*>(&dfa->actions[actionsStart]), actionsLength * sizeof(uint64_t) / sizeof(UChar)); |
| 406 | hash = hasher.hash(); |
| 407 | } |
| 408 | |
| 409 | bool isEmptyValue() const { return state == Empty; } |
| 410 | bool isDeletedValue() const { return state == Deleted; } |
| 411 | |
| 412 | unsigned hash; |
| 413 | |
| 414 | const DFA* dfa; |
| 415 | uint32_t actionsStart; |
| 416 | uint16_t actionsLength; |
| 417 | |
| 418 | enum { |
| 419 | Valid, |
| 420 | Empty, |
| 421 | Deleted |
| 422 | } state; |
| 423 | }; |
| 424 | |
| 425 | struct ActionKeyHash { |
| 426 | static unsigned hash(const ActionKey& actionKey) |
| 427 | { |
| 428 | return actionKey.hash; |
| 429 | } |
| 430 | |
| 431 | static bool equal(const ActionKey& a, const ActionKey& b) |
| 432 | { |
| 433 | if (a.state != b.state |
| 434 | || a.dfa != b.dfa |
| 435 | || a.actionsLength != b.actionsLength) |
| 436 | return false; |
| 437 | for (uint16_t i = 0; i < a.actionsLength; ++i) { |
| 438 | if (a.dfa->actions[a.actionsStart + i] != a.dfa->actions[b.actionsStart + i]) |
| 439 | return false; |
| 440 | } |
| 441 | return true; |
| 442 | } |
| 443 | static const bool safeToCompareToEmptyOrDeleted = false; |
| 444 | }; |
| 445 | |
| 446 | struct ActionKeyHashTraits : public WTF::CustomHashTraits<ActionKey> { |
| 447 | static const bool emptyValueIsZero = true; |
| 448 | }; |
| 449 | |
| 450 | } // anonymous namespace. |
| 451 | |
| 452 | void DFAMinimizer::minimize(DFA& dfa) |
| 453 | { |
| 454 | FullGraphPartition fullGraphPartition(dfa); |
| 455 | |
| 456 | // Unlike traditional minimization final states can be differentiated by their action. |
| 457 | // Instead of creating a single set for the final state, we partition by actions from |
| 458 | // the start. |
| 459 | HashMap<ActionKey, Vector<unsigned>, ActionKeyHash, ActionKeyHashTraits> finalStates; |
| 460 | for (unsigned i = 0; i < dfa.nodes.size(); ++i) { |
| 461 | const DFANode& node = dfa.nodes[i]; |
| 462 | if (node.hasActions()) { |
| 463 | // FIXME: Sort the actions in the dfa to make nodes that have the same actions in different order equal. |
| 464 | auto addResult = finalStates.add(ActionKey(&dfa, node.actionsStart(), node.actionsLength()), Vector<unsigned>()); |
| 465 | addResult.iterator->value.append(i); |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | for (const auto& slot : finalStates) { |
| 470 | for (unsigned finalStateIndex : slot.value) |
| 471 | fullGraphPartition.markNode(finalStateIndex); |
| 472 | fullGraphPartition.refinePartitions(); |
| 473 | } |
| 474 | |
| 475 | // Use every splitter to refine the node partitions. |
| 476 | fullGraphPartition.splitByUniqueTransitions(); |
| 477 | |
| 478 | Vector<unsigned> relocationVector; |
| 479 | relocationVector.reserveInitialCapacity(dfa.nodes.size()); |
| 480 | for (unsigned i = 0; i < dfa.nodes.size(); ++i) |
| 481 | relocationVector.uncheckedAppend(i); |
| 482 | |
| 483 | // Update all the transitions. |
| 484 | for (unsigned i = 0; i < dfa.nodes.size(); ++i) { |
| 485 | unsigned replacement = fullGraphPartition.nodeReplacement(i); |
| 486 | if (i != replacement) { |
| 487 | relocationVector[i] = replacement; |
| 488 | dfa.nodes[i].kill(dfa); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | dfa.root = relocationVector[dfa.root]; |
| 493 | for (DFANode& node : dfa.nodes) { |
| 494 | if (node.isKilled()) |
| 495 | continue; |
| 496 | |
| 497 | for (auto& transition : node.transitions(dfa)) { |
| 498 | uint32_t target = transition.target(); |
| 499 | uint32_t relocatedTarget = relocationVector[target]; |
| 500 | if (target != relocatedTarget) |
| 501 | transition.resetTarget(relocatedTarget); |
| 502 | } |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | } // namespace ContentExtensions |
| 507 | } // namespace WebCore |
| 508 | |
| 509 | #endif // ENABLE(CONTENT_EXTENSIONS) |
| 510 | |