1 | /* |
2 | * Copyright (C) 2015 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
14 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
15 | * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
17 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
18 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
19 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
20 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
21 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
22 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
23 | * THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "CombinedURLFilters.h" |
28 | |
29 | #if ENABLE(CONTENT_EXTENSIONS) |
30 | |
31 | #include "HashableActionList.h" |
32 | #include "Term.h" |
33 | #include <wtf/DataLog.h> |
34 | #include <wtf/Vector.h> |
35 | #include <wtf/text/CString.h> |
36 | |
37 | namespace WebCore { |
38 | |
39 | namespace ContentExtensions { |
40 | |
41 | struct PrefixTreeEdge { |
42 | const Term* term; |
43 | std::unique_ptr<PrefixTreeVertex> child; |
44 | }; |
45 | |
46 | typedef Vector<PrefixTreeEdge, 0, WTF::CrashOnOverflow, 1> PrefixTreeEdges; |
47 | |
48 | struct PrefixTreeVertex { |
49 | WTF_MAKE_STRUCT_FAST_ALLOCATED; |
50 | |
51 | PrefixTreeEdges edges; |
52 | }; |
53 | |
54 | struct ReverseSuffixTreeVertex; |
55 | struct ReverseSuffixTreeEdge { |
56 | const Term* term; |
57 | std::unique_ptr<ReverseSuffixTreeVertex> child; |
58 | }; |
59 | typedef Vector<ReverseSuffixTreeEdge, 0, WTF::CrashOnOverflow, 1> ReverseSuffixTreeEdges; |
60 | |
61 | struct ReverseSuffixTreeVertex { |
62 | ReverseSuffixTreeEdges edges; |
63 | uint32_t nodeId; |
64 | }; |
65 | typedef HashMap<HashableActionList, ReverseSuffixTreeVertex, HashableActionListHash, HashableActionListHashTraits> ReverseSuffixTreeRoots; |
66 | |
67 | #if CONTENT_EXTENSIONS_PERFORMANCE_REPORTING |
68 | static size_t recursiveMemoryUsed(const PrefixTreeVertex& vertex) |
69 | { |
70 | size_t size = sizeof(PrefixTreeVertex) |
71 | + vertex.edges.capacity() * sizeof(PrefixTreeEdge); |
72 | for (const auto& edge : vertex.edges) { |
73 | ASSERT(edge.child); |
74 | size += recursiveMemoryUsed(*edge.child.get()); |
75 | } |
76 | return size; |
77 | } |
78 | |
79 | size_t CombinedURLFilters::memoryUsed() const |
80 | { |
81 | ASSERT(m_prefixTreeRoot); |
82 | |
83 | size_t actionsSize = 0; |
84 | for (const auto& slot : m_actions) |
85 | actionsSize += slot.value.capacity() * sizeof(uint64_t); |
86 | |
87 | return sizeof(CombinedURLFilters) |
88 | + m_alphabet.memoryUsed() |
89 | + recursiveMemoryUsed(*m_prefixTreeRoot.get()) |
90 | + sizeof(HashMap<PrefixTreeVertex*, ActionList>) |
91 | + m_actions.capacity() * (sizeof(PrefixTreeVertex*) + sizeof(ActionList)) |
92 | + actionsSize; |
93 | } |
94 | #endif |
95 | |
96 | #if CONTENT_EXTENSIONS_STATE_MACHINE_DEBUGGING |
97 | static String prefixTreeVertexToString(const PrefixTreeVertex& vertex, const HashMap<const PrefixTreeVertex*, ActionList>& actions, unsigned depth) |
98 | { |
99 | StringBuilder builder; |
100 | while (depth--) |
101 | builder.appendLiteral(" " ); |
102 | builder.appendLiteral("vertex actions: " ); |
103 | |
104 | auto actionsSlot = actions.find(&vertex); |
105 | if (actionsSlot != actions.end()) { |
106 | for (uint64_t action : actionsSlot->value) { |
107 | builder.appendNumber(action); |
108 | builder.append(','); |
109 | } |
110 | } |
111 | builder.append('\n'); |
112 | return builder.toString(); |
113 | } |
114 | |
115 | static void recursivePrint(const PrefixTreeVertex& vertex, const HashMap<const PrefixTreeVertex*, ActionList>& actions, unsigned depth) |
116 | { |
117 | dataLogF("%s" , prefixTreeVertexToString(vertex, actions, depth).utf8().data()); |
118 | for (const auto& edge : vertex.edges) { |
119 | StringBuilder builder; |
120 | for (unsigned i = 0; i < depth * 2; ++i) |
121 | builder.append(' '); |
122 | builder.appendLiteral("vertex edge: " ); |
123 | builder.append(edge.term->toString()); |
124 | builder.append('\n'); |
125 | dataLogF("%s" , builder.toString().utf8().data()); |
126 | ASSERT(edge.child); |
127 | recursivePrint(*edge.child.get(), actions, depth + 1); |
128 | } |
129 | } |
130 | |
131 | void CombinedURLFilters::print() const |
132 | { |
133 | recursivePrint(*m_prefixTreeRoot.get(), m_actions, 0); |
134 | } |
135 | #endif |
136 | |
137 | CombinedURLFilters::CombinedURLFilters() |
138 | : m_prefixTreeRoot(std::make_unique<PrefixTreeVertex>()) |
139 | { |
140 | } |
141 | |
142 | CombinedURLFilters::~CombinedURLFilters() = default; |
143 | |
144 | bool CombinedURLFilters::isEmpty() const |
145 | { |
146 | return m_prefixTreeRoot->edges.isEmpty(); |
147 | } |
148 | |
149 | void CombinedURLFilters::addDomain(uint64_t actionId, const String& domain) |
150 | { |
151 | unsigned domainLength = domain.length(); |
152 | if (domainLength && domain[0] == '*') { |
153 | // If domain starts with a '*' then it means match domain and its subdomains, like (^|.)domain$ |
154 | // This way a domain of "*webkit.org" will match "bugs.webkit.org" and "webkit.org". |
155 | Vector<Term> prependDot; |
156 | Vector<Term> prependBeginningOfLine; |
157 | prependDot.reserveInitialCapacity(domainLength + 2); |
158 | prependBeginningOfLine.reserveInitialCapacity(domainLength); // This is just no .* at the beginning. |
159 | |
160 | Term canonicalDotStar(Term::UniversalTransition); |
161 | canonicalDotStar.quantify(AtomQuantifier::ZeroOrMore); |
162 | prependDot.uncheckedAppend(canonicalDotStar); |
163 | prependDot.uncheckedAppend(Term('.', true)); |
164 | |
165 | for (unsigned i = 1; i < domainLength; i++) { |
166 | ASSERT(isASCII(domain[i])); |
167 | ASSERT(!isASCIIUpper(domain[i])); |
168 | prependDot.uncheckedAppend(Term(domain[i], true)); |
169 | prependBeginningOfLine.uncheckedAppend(Term(domain[i], true)); |
170 | } |
171 | prependDot.uncheckedAppend(Term::EndOfLineAssertionTerm); |
172 | prependBeginningOfLine.uncheckedAppend(Term::EndOfLineAssertionTerm); |
173 | |
174 | addPattern(actionId, prependDot); |
175 | addPattern(actionId, prependBeginningOfLine); |
176 | } else { |
177 | // This is like adding ^domain$, but interpreting domain as a series of characters, not a regular expression. |
178 | // "webkit.org" will match "webkit.org" but not "bugs.webkit.org". |
179 | Vector<Term> prependBeginningOfLine; |
180 | prependBeginningOfLine.reserveInitialCapacity(domainLength + 1); // This is just no .* at the beginning. |
181 | for (unsigned i = 0; i < domainLength; i++) { |
182 | ASSERT(isASCII(domain[i])); |
183 | ASSERT(!isASCIIUpper(domain[i])); |
184 | prependBeginningOfLine.uncheckedAppend(Term(domain[i], true)); |
185 | } |
186 | prependBeginningOfLine.uncheckedAppend(Term::EndOfLineAssertionTerm); |
187 | addPattern(actionId, prependBeginningOfLine); |
188 | } |
189 | } |
190 | |
191 | void CombinedURLFilters::addPattern(uint64_t actionId, const Vector<Term>& pattern) |
192 | { |
193 | ASSERT_WITH_MESSAGE(!pattern.isEmpty(), "The parser should have excluded empty patterns before reaching CombinedURLFilters." ); |
194 | |
195 | if (pattern.isEmpty()) |
196 | return; |
197 | |
198 | // Extend the prefix tree with the new pattern. |
199 | PrefixTreeVertex* lastPrefixTree = m_prefixTreeRoot.get(); |
200 | |
201 | for (const Term& term : pattern) { |
202 | size_t nextEntryIndex = WTF::notFound; |
203 | for (size_t i = 0; i < lastPrefixTree->edges.size(); ++i) { |
204 | if (*lastPrefixTree->edges[i].term == term) { |
205 | nextEntryIndex = i; |
206 | break; |
207 | } |
208 | } |
209 | if (nextEntryIndex != WTF::notFound) |
210 | lastPrefixTree = lastPrefixTree->edges[nextEntryIndex].child.get(); |
211 | else { |
212 | lastPrefixTree->edges.append(PrefixTreeEdge({m_alphabet.interned(term), std::make_unique<PrefixTreeVertex>()})); |
213 | lastPrefixTree = lastPrefixTree->edges.last().child.get(); |
214 | } |
215 | } |
216 | |
217 | auto addResult = m_actions.add(lastPrefixTree, ActionList()); |
218 | ActionList& actions = addResult.iterator->value; |
219 | if (actions.find(actionId) == WTF::notFound) |
220 | actions.append(actionId); |
221 | } |
222 | |
223 | struct ActiveSubtree { |
224 | ActiveSubtree(PrefixTreeVertex& vertex, ImmutableCharNFANodeBuilder&& nfaNode, unsigned edgeIndex) |
225 | : vertex(vertex) |
226 | , nfaNode(WTFMove(nfaNode)) |
227 | , edgeIndex(edgeIndex) |
228 | { |
229 | } |
230 | PrefixTreeVertex& vertex; |
231 | ImmutableCharNFANodeBuilder nfaNode; |
232 | unsigned edgeIndex; |
233 | }; |
234 | |
235 | static void generateInfixUnsuitableForReverseSuffixTree(NFA& nfa, Vector<ActiveSubtree>& stack, const HashMap<const PrefixTreeVertex*, ActionList>& actions) |
236 | { |
237 | // To avoid conflicts, we use the reverse suffix tree for subtrees that do not merge |
238 | // in the prefix tree. |
239 | // |
240 | // We only unify the suffixes to the actions on the leaf. |
241 | // If there are actions inside the tree, we generate the part of the subtree up to the action. |
242 | // |
243 | // If we accidentally insert a node with action inside the reverse-suffix-tree, we would create |
244 | // new actions on unrelated pattern when unifying their suffixes. |
245 | for (unsigned i = stack.size() - 1; i--;) { |
246 | ActiveSubtree& activeSubtree = stack[i]; |
247 | if (activeSubtree.nfaNode.isValid()) |
248 | return; |
249 | |
250 | RELEASE_ASSERT_WITH_MESSAGE(i > 0, "The bottom of the stack must be the root of our fixed-length subtree. It should have it the isValid() case above." ); |
251 | |
252 | auto actionsIterator = actions.find(&activeSubtree.vertex); |
253 | bool hasActionInsideTree = actionsIterator != actions.end(); |
254 | |
255 | // Stricto sensu, we should count the number of exit edges with fixed length. |
256 | // That is costly and unlikely to matter in practice. |
257 | bool hasSingleOutcome = activeSubtree.vertex.edges.size() == 1; |
258 | |
259 | if (hasActionInsideTree || !hasSingleOutcome) { |
260 | // Go back to the end of the subtree that has already been generated. |
261 | // From there, generate everything up to the vertex we found. |
262 | unsigned end = i; |
263 | unsigned beginning = end; |
264 | |
265 | ActiveSubtree* sourceActiveSubtree = nullptr; |
266 | while (beginning--) { |
267 | ActiveSubtree& activeSubtree = stack[beginning]; |
268 | if (activeSubtree.nfaNode.isValid()) { |
269 | sourceActiveSubtree = &activeSubtree; |
270 | break; |
271 | } |
272 | } |
273 | ASSERT_WITH_MESSAGE(sourceActiveSubtree, "The root should always have a valid generator." ); |
274 | |
275 | for (unsigned stackIndex = beginning + 1; stackIndex <= end; ++stackIndex) { |
276 | ImmutableCharNFANodeBuilder& sourceNode = sourceActiveSubtree->nfaNode; |
277 | ASSERT(sourceNode.isValid()); |
278 | auto& edge = sourceActiveSubtree->vertex.edges[sourceActiveSubtree->edgeIndex]; |
279 | |
280 | ActiveSubtree& destinationActiveSubtree = stack[stackIndex]; |
281 | destinationActiveSubtree.nfaNode = edge.term->generateGraph(nfa, sourceNode, actions.get(&destinationActiveSubtree.vertex)); |
282 | |
283 | sourceActiveSubtree = &destinationActiveSubtree; |
284 | } |
285 | |
286 | return; |
287 | } |
288 | } |
289 | } |
290 | |
291 | static void generateSuffixWithReverseSuffixTree(NFA& nfa, Vector<ActiveSubtree>& stack, const HashMap<const PrefixTreeVertex*, ActionList>& actions, ReverseSuffixTreeRoots& reverseSuffixTreeRoots) |
292 | { |
293 | ActiveSubtree& leafSubtree = stack.last(); |
294 | ASSERT_WITH_MESSAGE(!leafSubtree.nfaNode.isValid(), "The leaf should never be generated by the code above, it should always be inserted into the prefix tree." ); |
295 | |
296 | ActionList actionList = actions.get(&leafSubtree.vertex); |
297 | ASSERT_WITH_MESSAGE(!actionList.isEmpty(), "Our prefix tree should always have actions on the leaves by construction." ); |
298 | |
299 | HashableActionList hashableActionList(actionList); |
300 | auto rootAddResult = reverseSuffixTreeRoots.add(hashableActionList, ReverseSuffixTreeVertex()); |
301 | if (rootAddResult.isNewEntry) { |
302 | ImmutableCharNFANodeBuilder newNode(nfa); |
303 | newNode.setActions(actionList.begin(), actionList.end()); |
304 | rootAddResult.iterator->value.nodeId = newNode.nodeId(); |
305 | } |
306 | |
307 | ReverseSuffixTreeVertex* activeReverseSuffixTreeVertex = &rootAddResult.iterator->value; |
308 | uint32_t destinationNodeId = rootAddResult.iterator->value.nodeId; |
309 | |
310 | unsigned stackPosition = stack.size() - 2; |
311 | while (true) { |
312 | ActiveSubtree& source = stack[stackPosition]; |
313 | auto& edge = source.vertex.edges[source.edgeIndex]; |
314 | |
315 | // This is the end condition: when we meet a node that has already been generated, |
316 | // we just need to connect our backward tree to the forward tree. |
317 | // |
318 | // We *must not* add this last node to the reverse-suffix tree. That node can have |
319 | // transitions back to earlier part of the prefix tree. If the prefix tree "caches" |
320 | // such node, it would create new transitions that did not exist in the source language. |
321 | if (source.nfaNode.isValid()) { |
322 | stack.shrink(stackPosition + 1); |
323 | edge.term->generateGraph(nfa, source.nfaNode, destinationNodeId); |
324 | return; |
325 | } |
326 | --stackPosition; |
327 | |
328 | ASSERT_WITH_MESSAGE(!actions.contains(&source.vertex), "Any node with final actions should have been created before hitting the reverse suffix-tree." ); |
329 | |
330 | ReverseSuffixTreeEdge* existingEdge = nullptr; |
331 | for (ReverseSuffixTreeEdge& potentialExistingEdge : activeReverseSuffixTreeVertex->edges) { |
332 | if (edge.term == potentialExistingEdge.term) { |
333 | existingEdge = &potentialExistingEdge; |
334 | break; |
335 | } |
336 | } |
337 | |
338 | if (existingEdge) |
339 | activeReverseSuffixTreeVertex = existingEdge->child.get(); |
340 | else { |
341 | ImmutableCharNFANodeBuilder newNode(nfa); |
342 | edge.term->generateGraph(nfa, newNode, destinationNodeId); |
343 | std::unique_ptr<ReverseSuffixTreeVertex> newVertex(new ReverseSuffixTreeVertex()); |
344 | newVertex->nodeId = newNode.nodeId(); |
345 | |
346 | ReverseSuffixTreeVertex* newVertexAddress = newVertex.get(); |
347 | activeReverseSuffixTreeVertex->edges.append(ReverseSuffixTreeEdge({ edge.term, WTFMove(newVertex) })); |
348 | activeReverseSuffixTreeVertex = newVertexAddress; |
349 | } |
350 | destinationNodeId = activeReverseSuffixTreeVertex->nodeId; |
351 | |
352 | ASSERT(source.vertex.edges.size() == 1); |
353 | source.vertex.edges.clear(); |
354 | } |
355 | |
356 | RELEASE_ASSERT_NOT_REACHED(); |
357 | } |
358 | |
359 | static void clearReverseSuffixTree(ReverseSuffixTreeRoots& reverseSuffixTreeRoots) |
360 | { |
361 | // We cannot rely on the destructor being called in order from top to bottom as we may overflow |
362 | // the stack. Instead, we go depth first in the reverse-suffix-tree. |
363 | |
364 | for (auto& slot : reverseSuffixTreeRoots) { |
365 | Vector<ReverseSuffixTreeVertex*, 128> stack; |
366 | stack.append(&slot.value); |
367 | |
368 | while (true) { |
369 | ReverseSuffixTreeVertex* top = stack.last(); |
370 | if (top->edges.isEmpty()) { |
371 | stack.removeLast(); |
372 | if (stack.isEmpty()) |
373 | break; |
374 | stack.last()->edges.removeLast(); |
375 | } else |
376 | stack.append(top->edges.last().child.get()); |
377 | } |
378 | } |
379 | reverseSuffixTreeRoots.clear(); |
380 | } |
381 | |
382 | static void generateNFAForSubtree(NFA& nfa, ImmutableCharNFANodeBuilder&& subtreeRoot, PrefixTreeVertex& root, const HashMap<const PrefixTreeVertex*, ActionList>& actions, size_t maxNFASize) |
383 | { |
384 | // This recurses the subtree of the prefix tree. |
385 | // For each edge that has fixed length (no quantifiers like ?, *, or +) it generates the nfa graph, |
386 | // recurses into children, and deletes any processed leaf nodes. |
387 | |
388 | ReverseSuffixTreeRoots reverseSuffixTreeRoots; |
389 | Vector<ActiveSubtree> stack; |
390 | if (!root.edges.isEmpty()) |
391 | stack.append(ActiveSubtree(root, WTFMove(subtreeRoot), 0)); |
392 | |
393 | bool nfaTooBig = false; |
394 | |
395 | // Generate graphs for each subtree that does not contain any quantifiers. |
396 | while (!stack.isEmpty()) { |
397 | PrefixTreeVertex& vertex = stack.last().vertex; |
398 | const unsigned edgeIndex = stack.last().edgeIndex; |
399 | |
400 | if (edgeIndex < vertex.edges.size()) { |
401 | auto& edge = vertex.edges[edgeIndex]; |
402 | |
403 | // Clean up any processed leaves and return early if we are past the maxNFASize. |
404 | if (nfaTooBig) { |
405 | stack.last().edgeIndex = stack.last().vertex.edges.size(); |
406 | continue; |
407 | } |
408 | |
409 | // Quantified edges in the subtree will be a part of another NFA. |
410 | if (!edge.term->hasFixedLength()) { |
411 | stack.last().edgeIndex++; |
412 | continue; |
413 | } |
414 | |
415 | ASSERT(edge.child.get()); |
416 | ImmutableCharNFANodeBuilder emptyBuilder; |
417 | stack.append(ActiveSubtree(*edge.child.get(), WTFMove(emptyBuilder), 0)); |
418 | } else { |
419 | bool isLeaf = vertex.edges.isEmpty(); |
420 | |
421 | ASSERT(edgeIndex == vertex.edges.size()); |
422 | vertex.edges.removeAllMatching([](PrefixTreeEdge& edge) |
423 | { |
424 | return !edge.term; |
425 | }); |
426 | |
427 | if (isLeaf) { |
428 | generateInfixUnsuitableForReverseSuffixTree(nfa, stack, actions); |
429 | generateSuffixWithReverseSuffixTree(nfa, stack, actions, reverseSuffixTreeRoots); |
430 | |
431 | // Only stop generating an NFA at a leaf to ensure we have a correct NFA. We could go slightly over the maxNFASize. |
432 | if (nfa.nodes.size() > maxNFASize) |
433 | nfaTooBig = true; |
434 | } else |
435 | stack.removeLast(); |
436 | |
437 | if (!stack.isEmpty()) { |
438 | auto& activeSubtree = stack.last(); |
439 | auto& edge = activeSubtree.vertex.edges[stack.last().edgeIndex]; |
440 | if (edge.child->edges.isEmpty()) |
441 | edge.term = nullptr; // Mark this leaf for deleting. |
442 | activeSubtree.edgeIndex++; |
443 | } |
444 | } |
445 | } |
446 | clearReverseSuffixTree(reverseSuffixTreeRoots); |
447 | } |
448 | |
449 | void CombinedURLFilters::processNFAs(size_t maxNFASize, const WTF::Function<void(NFA&&)>& handler) |
450 | { |
451 | #if CONTENT_EXTENSIONS_STATE_MACHINE_DEBUGGING |
452 | print(); |
453 | #endif |
454 | while (true) { |
455 | // Traverse out to a leaf. |
456 | Vector<PrefixTreeVertex*, 128> stack; |
457 | PrefixTreeVertex* vertex = m_prefixTreeRoot.get(); |
458 | while (true) { |
459 | ASSERT(vertex); |
460 | stack.append(vertex); |
461 | if (vertex->edges.isEmpty()) |
462 | break; |
463 | vertex = vertex->edges.last().child.get(); |
464 | } |
465 | if (stack.size() == 1) |
466 | break; // We're done once we have processed and removed all the edges in the prefix tree. |
467 | |
468 | // Find the prefix root for this NFA. This is the vertex after the last term with a quantifier if there is one, |
469 | // or the root if there are no quantifiers left. |
470 | while (stack.size() > 1) { |
471 | if (!stack[stack.size() - 2]->edges.last().term->hasFixedLength()) |
472 | break; |
473 | stack.removeLast(); |
474 | } |
475 | ASSERT_WITH_MESSAGE(!stack.isEmpty(), "At least the root should be in the stack" ); |
476 | |
477 | // Make an NFA with the subtrees for whom this is also the last quantifier (or who also have no quantifier). |
478 | NFA nfa; |
479 | { |
480 | // Put the prefix into the NFA. |
481 | ImmutableCharNFANodeBuilder lastNode(nfa); |
482 | for (unsigned i = 0; i < stack.size() - 1; ++i) { |
483 | const PrefixTreeEdge& edge = stack[i]->edges.last(); |
484 | ImmutableCharNFANodeBuilder newNode = edge.term->generateGraph(nfa, lastNode, m_actions.get(edge.child.get())); |
485 | lastNode = WTFMove(newNode); |
486 | } |
487 | |
488 | // Put the non-quantified vertices in the subtree into the NFA and delete them. |
489 | ASSERT(stack.last()); |
490 | generateNFAForSubtree(nfa, WTFMove(lastNode), *stack.last(), m_actions, maxNFASize); |
491 | } |
492 | nfa.finalize(); |
493 | |
494 | handler(WTFMove(nfa)); |
495 | |
496 | // Clean up any processed leaf nodes. |
497 | while (true) { |
498 | if (stack.size() > 1) { |
499 | if (stack[stack.size() - 1]->edges.isEmpty()) { |
500 | stack[stack.size() - 2]->edges.removeLast(); |
501 | stack.removeLast(); |
502 | } else |
503 | break; // Vertex is not a leaf. |
504 | } else |
505 | break; // Leave the empty root. |
506 | } |
507 | } |
508 | } |
509 | |
510 | } // namespace ContentExtensions |
511 | } // namespace WebCore |
512 | |
513 | #endif // ENABLE(CONTENT_EXTENSIONS) |
514 | |