| 1 | /* |
| 2 | * Copyright (C) 2010, Google Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 15 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 16 | * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 17 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 18 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 19 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| 20 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 21 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 22 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 23 | */ |
| 24 | |
| 25 | #include "config.h" |
| 26 | |
| 27 | #if ENABLE(WEB_AUDIO) |
| 28 | |
| 29 | #include "BiquadDSPKernel.h" |
| 30 | |
| 31 | #include "BiquadProcessor.h" |
| 32 | #include "FloatConversion.h" |
| 33 | #include <limits.h> |
| 34 | #include <wtf/Vector.h> |
| 35 | |
| 36 | namespace WebCore { |
| 37 | |
| 38 | // FIXME: As a recursive linear filter, depending on its parameters, a biquad filter can have |
| 39 | // an infinite tailTime. In practice, Biquad filters do not usually (except for very high resonance values) |
| 40 | // have a tailTime of longer than approx. 200ms. This value could possibly be calculated based on the |
| 41 | // settings of the Biquad. |
| 42 | static const double MaxBiquadDelayTime = 0.2; |
| 43 | |
| 44 | void BiquadDSPKernel::updateCoefficientsIfNecessary(bool useSmoothing, bool forceUpdate) |
| 45 | { |
| 46 | if (forceUpdate || biquadProcessor()->filterCoefficientsDirty()) { |
| 47 | double value1; |
| 48 | double value2; |
| 49 | double gain; |
| 50 | double detune; // in Cents |
| 51 | |
| 52 | if (biquadProcessor()->hasSampleAccurateValues()) { |
| 53 | value1 = biquadProcessor()->parameter1()->finalValue(); |
| 54 | value2 = biquadProcessor()->parameter2()->finalValue(); |
| 55 | gain = biquadProcessor()->parameter3()->finalValue(); |
| 56 | detune = biquadProcessor()->parameter4()->finalValue(); |
| 57 | } else if (useSmoothing) { |
| 58 | value1 = biquadProcessor()->parameter1()->smoothedValue(); |
| 59 | value2 = biquadProcessor()->parameter2()->smoothedValue(); |
| 60 | gain = biquadProcessor()->parameter3()->smoothedValue(); |
| 61 | detune = biquadProcessor()->parameter4()->smoothedValue(); |
| 62 | } else { |
| 63 | value1 = biquadProcessor()->parameter1()->value(); |
| 64 | value2 = biquadProcessor()->parameter2()->value(); |
| 65 | gain = biquadProcessor()->parameter3()->value(); |
| 66 | detune = biquadProcessor()->parameter4()->value(); |
| 67 | } |
| 68 | |
| 69 | // Convert from Hertz to normalized frequency 0 -> 1. |
| 70 | double nyquist = this->nyquist(); |
| 71 | double normalizedFrequency = value1 / nyquist; |
| 72 | |
| 73 | // Offset frequency by detune. |
| 74 | if (detune) |
| 75 | normalizedFrequency *= pow(2, detune / 1200); |
| 76 | |
| 77 | // Configure the biquad with the new filter parameters for the appropriate type of filter. |
| 78 | switch (biquadProcessor()->type()) { |
| 79 | case BiquadFilterType::Lowpass: |
| 80 | m_biquad.setLowpassParams(normalizedFrequency, value2); |
| 81 | break; |
| 82 | |
| 83 | case BiquadFilterType::Highpass: |
| 84 | m_biquad.setHighpassParams(normalizedFrequency, value2); |
| 85 | break; |
| 86 | |
| 87 | case BiquadFilterType::Bandpass: |
| 88 | m_biquad.setBandpassParams(normalizedFrequency, value2); |
| 89 | break; |
| 90 | |
| 91 | case BiquadFilterType::Lowshelf: |
| 92 | m_biquad.setLowShelfParams(normalizedFrequency, gain); |
| 93 | break; |
| 94 | |
| 95 | case BiquadFilterType::Highshelf: |
| 96 | m_biquad.setHighShelfParams(normalizedFrequency, gain); |
| 97 | break; |
| 98 | |
| 99 | case BiquadFilterType::Peaking: |
| 100 | m_biquad.setPeakingParams(normalizedFrequency, value2, gain); |
| 101 | break; |
| 102 | |
| 103 | case BiquadFilterType::Notch: |
| 104 | m_biquad.setNotchParams(normalizedFrequency, value2); |
| 105 | break; |
| 106 | |
| 107 | case BiquadFilterType::Allpass: |
| 108 | m_biquad.setAllpassParams(normalizedFrequency, value2); |
| 109 | break; |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | void BiquadDSPKernel::process(const float* source, float* destination, size_t framesToProcess) |
| 115 | { |
| 116 | ASSERT(source && destination && biquadProcessor()); |
| 117 | |
| 118 | // Recompute filter coefficients if any of the parameters have changed. |
| 119 | // FIXME: as an optimization, implement a way that a Biquad object can simply copy its internal filter coefficients from another Biquad object. |
| 120 | // Then re-factor this code to only run for the first BiquadDSPKernel of each BiquadProcessor. |
| 121 | |
| 122 | updateCoefficientsIfNecessary(true, false); |
| 123 | |
| 124 | m_biquad.process(source, destination, framesToProcess); |
| 125 | } |
| 126 | |
| 127 | void BiquadDSPKernel::getFrequencyResponse(int nFrequencies, |
| 128 | const float* frequencyHz, |
| 129 | float* magResponse, |
| 130 | float* phaseResponse) |
| 131 | { |
| 132 | bool isGood = nFrequencies > 0 && frequencyHz && magResponse && phaseResponse; |
| 133 | ASSERT(isGood); |
| 134 | if (!isGood) |
| 135 | return; |
| 136 | |
| 137 | Vector<float> frequency(nFrequencies); |
| 138 | |
| 139 | double nyquist = this->nyquist(); |
| 140 | |
| 141 | // Convert from frequency in Hz to normalized frequency (0 -> 1), |
| 142 | // with 1 equal to the Nyquist frequency. |
| 143 | for (int k = 0; k < nFrequencies; ++k) |
| 144 | frequency[k] = narrowPrecisionToFloat(frequencyHz[k] / nyquist); |
| 145 | |
| 146 | // We want to get the final values of the coefficients and compute |
| 147 | // the response from that instead of some intermediate smoothed |
| 148 | // set. Forcefully update the coefficients even if they are not |
| 149 | // dirty. |
| 150 | |
| 151 | updateCoefficientsIfNecessary(false, true); |
| 152 | |
| 153 | m_biquad.getFrequencyResponse(nFrequencies, frequency.data(), magResponse, phaseResponse); |
| 154 | } |
| 155 | |
| 156 | double BiquadDSPKernel::tailTime() const |
| 157 | { |
| 158 | return MaxBiquadDelayTime; |
| 159 | } |
| 160 | |
| 161 | double BiquadDSPKernel::latencyTime() const |
| 162 | { |
| 163 | return 0; |
| 164 | } |
| 165 | |
| 166 | } // namespace WebCore |
| 167 | |
| 168 | #endif // ENABLE(WEB_AUDIO) |
| 169 | |