| 1 | /* |
| 2 | * Copyright (C) 2014, 2016 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| 14 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| 15 | * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| 17 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 18 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 19 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 20 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 21 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 22 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 23 | * THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | #include "config.h" |
| 26 | #include "IDBSerialization.h" |
| 27 | |
| 28 | #if ENABLE(INDEXED_DATABASE) |
| 29 | |
| 30 | #include "IDBKeyData.h" |
| 31 | #include "IDBKeyPath.h" |
| 32 | #include "KeyedCoding.h" |
| 33 | |
| 34 | #if USE(GLIB) |
| 35 | #include <glib.h> |
| 36 | #include <wtf/glib/GRefPtr.h> |
| 37 | #endif |
| 38 | |
| 39 | namespace WebCore { |
| 40 | |
| 41 | enum class KeyPathType { Null, String, Array }; |
| 42 | |
| 43 | RefPtr<SharedBuffer> serializeIDBKeyPath(const Optional<IDBKeyPath>& keyPath) |
| 44 | { |
| 45 | auto encoder = KeyedEncoder::encoder(); |
| 46 | |
| 47 | if (keyPath) { |
| 48 | auto visitor = WTF::makeVisitor([&](const String& string) { |
| 49 | encoder->encodeEnum("type" , KeyPathType::String); |
| 50 | encoder->encodeString("string" , string); |
| 51 | }, [&](const Vector<String>& vector) { |
| 52 | encoder->encodeEnum("type" , KeyPathType::Array); |
| 53 | encoder->encodeObjects("array" , vector.begin(), vector.end(), [](WebCore::KeyedEncoder& encoder, const String& string) { |
| 54 | encoder.encodeString("string" , string); |
| 55 | }); |
| 56 | }); |
| 57 | WTF::visit(visitor, keyPath.value()); |
| 58 | } else |
| 59 | encoder->encodeEnum("type" , KeyPathType::Null); |
| 60 | |
| 61 | return encoder->finishEncoding(); |
| 62 | } |
| 63 | |
| 64 | bool deserializeIDBKeyPath(const uint8_t* data, size_t size, Optional<IDBKeyPath>& result) |
| 65 | { |
| 66 | if (!data || !size) |
| 67 | return false; |
| 68 | |
| 69 | auto decoder = KeyedDecoder::decoder(data, size); |
| 70 | |
| 71 | KeyPathType type; |
| 72 | bool succeeded = decoder->decodeEnum("type" , type, [](KeyPathType value) { |
| 73 | return value == KeyPathType::Null || value == KeyPathType::String || value == KeyPathType::Array; |
| 74 | }); |
| 75 | if (!succeeded) |
| 76 | return false; |
| 77 | |
| 78 | switch (type) { |
| 79 | case KeyPathType::Null: |
| 80 | break; |
| 81 | case KeyPathType::String: { |
| 82 | String string; |
| 83 | if (!decoder->decodeString("string" , string)) |
| 84 | return false; |
| 85 | result = IDBKeyPath(WTFMove(string)); |
| 86 | break; |
| 87 | } |
| 88 | case KeyPathType::Array: { |
| 89 | Vector<String> vector; |
| 90 | succeeded = decoder->decodeObjects("array" , vector, [](KeyedDecoder& decoder, String& result) { |
| 91 | return decoder.decodeString("string" , result); |
| 92 | }); |
| 93 | if (!succeeded) |
| 94 | return false; |
| 95 | result = IDBKeyPath(WTFMove(vector)); |
| 96 | break; |
| 97 | } |
| 98 | } |
| 99 | return true; |
| 100 | } |
| 101 | |
| 102 | static bool isLegacySerializedIDBKeyData(const uint8_t* data, size_t size) |
| 103 | { |
| 104 | #if USE(CF) |
| 105 | UNUSED_PARAM(size); |
| 106 | |
| 107 | // This is the magic character that begins serialized PropertyLists, and tells us whether |
| 108 | // the key we're looking at is an old-style key. |
| 109 | static const uint8_t legacySerializedKeyVersion = 'b'; |
| 110 | if (data[0] == legacySerializedKeyVersion) |
| 111 | return true; |
| 112 | #elif USE(GLIB) |
| 113 | // KeyedEncoderGLib uses a GVariant dictionary, so check if the given data is a valid GVariant dictionary. |
| 114 | GRefPtr<GBytes> bytes = adoptGRef(g_bytes_new(data, size)); |
| 115 | GRefPtr<GVariant> variant = g_variant_new_from_bytes(G_VARIANT_TYPE("a{sv}" ), bytes.get(), FALSE); |
| 116 | return g_variant_is_normal_form(variant.get()); |
| 117 | #else |
| 118 | UNUSED_PARAM(data); |
| 119 | UNUSED_PARAM(size); |
| 120 | #endif |
| 121 | return false; |
| 122 | } |
| 123 | |
| 124 | |
| 125 | /* |
| 126 | The IDBKeyData serialization format is as follows: |
| 127 | [1 byte version header][Key Buffer] |
| 128 | |
| 129 | The Key Buffer serialization format is as follows: |
| 130 | [1 byte key type][Type specific data] |
| 131 | |
| 132 | Type specific serialization formats are as follows for each of the types: |
| 133 | Min: |
| 134 | [0 bytes] |
| 135 | |
| 136 | Number: |
| 137 | [8 bytes representing a double encoded in little endian] |
| 138 | |
| 139 | Date: |
| 140 | [8 bytes representing a double encoded in little endian] |
| 141 | |
| 142 | String: |
| 143 | [4 bytes representing string "length" in little endian]["length" number of 2-byte pairs representing ECMAScript 16-bit code units] |
| 144 | |
| 145 | Binary: |
| 146 | [8 bytes representing the "size" of the binary blob]["size" bytes] |
| 147 | |
| 148 | Array: |
| 149 | [8 bytes representing the "length" of the key array]["length" individual Key Buffer entries] |
| 150 | |
| 151 | Max: |
| 152 | [0 bytes] |
| 153 | */ |
| 154 | |
| 155 | static const uint8_t SIDBKeyVersion = 0x00; |
| 156 | enum class SIDBKeyType : uint8_t { |
| 157 | Min = 0x00, |
| 158 | Number = 0x20, |
| 159 | Date = 0x40, |
| 160 | String = 0x60, |
| 161 | Binary = 0x80, |
| 162 | Array = 0xA0, |
| 163 | Max = 0xFF, |
| 164 | }; |
| 165 | |
| 166 | static SIDBKeyType serializedTypeForKeyType(IndexedDB::KeyType type) |
| 167 | { |
| 168 | switch (type) { |
| 169 | case IndexedDB::KeyType::Min: |
| 170 | return SIDBKeyType::Min; |
| 171 | case IndexedDB::KeyType::Number: |
| 172 | return SIDBKeyType::Number; |
| 173 | case IndexedDB::KeyType::Date: |
| 174 | return SIDBKeyType::Date; |
| 175 | case IndexedDB::KeyType::String: |
| 176 | return SIDBKeyType::String; |
| 177 | case IndexedDB::KeyType::Binary: |
| 178 | return SIDBKeyType::Binary; |
| 179 | case IndexedDB::KeyType::Array: |
| 180 | return SIDBKeyType::Array; |
| 181 | case IndexedDB::KeyType::Max: |
| 182 | return SIDBKeyType::Max; |
| 183 | case IndexedDB::KeyType::Invalid: |
| 184 | RELEASE_ASSERT_NOT_REACHED(); |
| 185 | }; |
| 186 | |
| 187 | RELEASE_ASSERT_NOT_REACHED(); |
| 188 | } |
| 189 | |
| 190 | #if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN) || CPU(NEEDS_ALIGNED_ACCESS) |
| 191 | template <typename T> static void writeLittleEndian(Vector<char>& buffer, T value) |
| 192 | { |
| 193 | for (unsigned i = 0; i < sizeof(T); i++) { |
| 194 | buffer.append(value & 0xFF); |
| 195 | value >>= 8; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | template <typename T> static bool readLittleEndian(const uint8_t*& ptr, const uint8_t* end, T& value) |
| 200 | { |
| 201 | if (ptr > end - sizeof(value)) |
| 202 | return false; |
| 203 | |
| 204 | value = 0; |
| 205 | for (size_t i = 0; i < sizeof(T); i++) |
| 206 | value += ((T)*ptr++) << (i * 8); |
| 207 | return true; |
| 208 | } |
| 209 | #else |
| 210 | template <typename T> static void writeLittleEndian(Vector<char>& buffer, T value) |
| 211 | { |
| 212 | buffer.append(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| 213 | } |
| 214 | |
| 215 | template <typename T> static bool readLittleEndian(const uint8_t*& ptr, const uint8_t* end, T& value) |
| 216 | { |
| 217 | if (ptr > end - sizeof(value)) |
| 218 | return false; |
| 219 | |
| 220 | value = *reinterpret_cast<const T*>(ptr); |
| 221 | ptr += sizeof(T); |
| 222 | |
| 223 | return true; |
| 224 | } |
| 225 | #endif |
| 226 | |
| 227 | static void writeDouble(Vector<char>& data, double d) |
| 228 | { |
| 229 | writeLittleEndian(data, *reinterpret_cast<uint64_t*>(&d)); |
| 230 | } |
| 231 | |
| 232 | static bool readDouble(const uint8_t*& data, const uint8_t* end, double& d) |
| 233 | { |
| 234 | return readLittleEndian(data, end, *reinterpret_cast<uint64_t*>(&d)); |
| 235 | } |
| 236 | |
| 237 | static void encodeKey(Vector<char>& data, const IDBKeyData& key) |
| 238 | { |
| 239 | SIDBKeyType type = serializedTypeForKeyType(key.type()); |
| 240 | data.append(static_cast<char>(type)); |
| 241 | |
| 242 | switch (type) { |
| 243 | case SIDBKeyType::Number: |
| 244 | writeDouble(data, key.number()); |
| 245 | break; |
| 246 | case SIDBKeyType::Date: |
| 247 | writeDouble(data, key.date()); |
| 248 | break; |
| 249 | case SIDBKeyType::String: { |
| 250 | auto string = key.string(); |
| 251 | uint32_t length = string.length(); |
| 252 | writeLittleEndian(data, length); |
| 253 | |
| 254 | for (size_t i = 0; i < length; ++i) |
| 255 | writeLittleEndian(data, string[i]); |
| 256 | |
| 257 | break; |
| 258 | } |
| 259 | case SIDBKeyType::Binary: { |
| 260 | auto& buffer = key.binary(); |
| 261 | uint64_t size = buffer.size(); |
| 262 | writeLittleEndian(data, size); |
| 263 | |
| 264 | auto* bufferData = buffer.data(); |
| 265 | ASSERT(bufferData || !size); |
| 266 | if (bufferData) |
| 267 | data.append(bufferData->data(), bufferData->size()); |
| 268 | |
| 269 | break; |
| 270 | } |
| 271 | case SIDBKeyType::Array: { |
| 272 | auto& array = key.array(); |
| 273 | uint64_t size = array.size(); |
| 274 | writeLittleEndian(data, size); |
| 275 | for (auto& key : array) |
| 276 | encodeKey(data, key); |
| 277 | |
| 278 | break; |
| 279 | } |
| 280 | case SIDBKeyType::Min: |
| 281 | case SIDBKeyType::Max: |
| 282 | break; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | RefPtr<SharedBuffer> serializeIDBKeyData(const IDBKeyData& key) |
| 287 | { |
| 288 | Vector<char> data; |
| 289 | data.append(SIDBKeyVersion); |
| 290 | |
| 291 | encodeKey(data, key); |
| 292 | return SharedBuffer::create(WTFMove(data)); |
| 293 | } |
| 294 | |
| 295 | static bool decodeKey(const uint8_t*& data, const uint8_t* end, IDBKeyData& result) |
| 296 | { |
| 297 | if (!data || data >= end) |
| 298 | return false; |
| 299 | |
| 300 | SIDBKeyType type = static_cast<SIDBKeyType>(data++[0]); |
| 301 | switch (type) { |
| 302 | case SIDBKeyType::Min: |
| 303 | result = IDBKeyData::minimum(); |
| 304 | return true; |
| 305 | case SIDBKeyType::Max: |
| 306 | result = IDBKeyData::maximum(); |
| 307 | return true; |
| 308 | case SIDBKeyType::Number: { |
| 309 | double d; |
| 310 | if (!readDouble(data, end, d)) |
| 311 | return false; |
| 312 | |
| 313 | result.setNumberValue(d); |
| 314 | return true; |
| 315 | } |
| 316 | case SIDBKeyType::Date: { |
| 317 | double d; |
| 318 | if (!readDouble(data, end, d)) |
| 319 | return false; |
| 320 | |
| 321 | result.setDateValue(d); |
| 322 | return true; |
| 323 | } |
| 324 | case SIDBKeyType::String: { |
| 325 | uint32_t length; |
| 326 | if (!readLittleEndian(data, end, length)) |
| 327 | return false; |
| 328 | |
| 329 | if (static_cast<uint64_t>(end - data) < length * 2) |
| 330 | return false; |
| 331 | |
| 332 | Vector<UChar> buffer; |
| 333 | buffer.reserveInitialCapacity(length); |
| 334 | for (size_t i = 0; i < length; i++) { |
| 335 | uint16_t ch; |
| 336 | if (!readLittleEndian(data, end, ch)) |
| 337 | return false; |
| 338 | buffer.uncheckedAppend(ch); |
| 339 | } |
| 340 | |
| 341 | result.setStringValue(String::adopt(WTFMove(buffer))); |
| 342 | |
| 343 | return true; |
| 344 | } |
| 345 | case SIDBKeyType::Binary: { |
| 346 | uint64_t size64; |
| 347 | if (!readLittleEndian(data, end, size64)) |
| 348 | return false; |
| 349 | |
| 350 | if (static_cast<uint64_t>(end - data) < size64) |
| 351 | return false; |
| 352 | |
| 353 | if (size64 > std::numeric_limits<size_t>::max()) |
| 354 | return false; |
| 355 | |
| 356 | size_t size = static_cast<size_t>(size64); |
| 357 | Vector<uint8_t> dataVector; |
| 358 | |
| 359 | dataVector.append(data, size); |
| 360 | data += size; |
| 361 | |
| 362 | result.setBinaryValue(ThreadSafeDataBuffer::create(WTFMove(dataVector))); |
| 363 | return true; |
| 364 | } |
| 365 | case SIDBKeyType::Array: { |
| 366 | uint64_t size64; |
| 367 | if (!readLittleEndian(data, end, size64)) |
| 368 | return false; |
| 369 | |
| 370 | if (size64 > std::numeric_limits<size_t>::max()) |
| 371 | return false; |
| 372 | |
| 373 | size_t size = static_cast<size_t>(size64); |
| 374 | Vector<IDBKeyData> array; |
| 375 | array.reserveInitialCapacity(size); |
| 376 | |
| 377 | for (size_t i = 0; i < size; ++i) { |
| 378 | IDBKeyData keyData; |
| 379 | if (!decodeKey(data, end, keyData)) |
| 380 | return false; |
| 381 | |
| 382 | ASSERT(keyData.isValid()); |
| 383 | array.uncheckedAppend(WTFMove(keyData)); |
| 384 | } |
| 385 | |
| 386 | result.setArrayValue(array); |
| 387 | |
| 388 | return true; |
| 389 | } |
| 390 | default: |
| 391 | LOG_ERROR("decodeKey encountered unexpected type: %i" , (int)type); |
| 392 | return false; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | bool deserializeIDBKeyData(const uint8_t* data, size_t size, IDBKeyData& result) |
| 397 | { |
| 398 | if (!data || !size) |
| 399 | return false; |
| 400 | |
| 401 | if (isLegacySerializedIDBKeyData(data, size)) { |
| 402 | auto decoder = KeyedDecoder::decoder(data, size); |
| 403 | return IDBKeyData::decode(*decoder, result); |
| 404 | } |
| 405 | |
| 406 | // Verify this is a SerializedIDBKey version we understand. |
| 407 | const uint8_t* current = data; |
| 408 | const uint8_t* end = data + size; |
| 409 | if (current++[0] != SIDBKeyVersion) |
| 410 | return false; |
| 411 | |
| 412 | if (decodeKey(current, end, result)) { |
| 413 | // Even if we successfully decoded a key, the deserialize is only successful |
| 414 | // if we actually consumed all input data. |
| 415 | return current == end; |
| 416 | } |
| 417 | |
| 418 | return false; |
| 419 | } |
| 420 | |
| 421 | } // namespace WebCore |
| 422 | |
| 423 | #endif // ENABLE(INDEXED_DATABASE) |
| 424 | |