1 | /* |
2 | * Copyright (C) 2014, 2016 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
14 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
15 | * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
17 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
18 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
19 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
20 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
21 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
22 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
23 | * THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | #include "config.h" |
26 | #include "IDBSerialization.h" |
27 | |
28 | #if ENABLE(INDEXED_DATABASE) |
29 | |
30 | #include "IDBKeyData.h" |
31 | #include "IDBKeyPath.h" |
32 | #include "KeyedCoding.h" |
33 | |
34 | #if USE(GLIB) |
35 | #include <glib.h> |
36 | #include <wtf/glib/GRefPtr.h> |
37 | #endif |
38 | |
39 | namespace WebCore { |
40 | |
41 | enum class KeyPathType { Null, String, Array }; |
42 | |
43 | RefPtr<SharedBuffer> serializeIDBKeyPath(const Optional<IDBKeyPath>& keyPath) |
44 | { |
45 | auto encoder = KeyedEncoder::encoder(); |
46 | |
47 | if (keyPath) { |
48 | auto visitor = WTF::makeVisitor([&](const String& string) { |
49 | encoder->encodeEnum("type" , KeyPathType::String); |
50 | encoder->encodeString("string" , string); |
51 | }, [&](const Vector<String>& vector) { |
52 | encoder->encodeEnum("type" , KeyPathType::Array); |
53 | encoder->encodeObjects("array" , vector.begin(), vector.end(), [](WebCore::KeyedEncoder& encoder, const String& string) { |
54 | encoder.encodeString("string" , string); |
55 | }); |
56 | }); |
57 | WTF::visit(visitor, keyPath.value()); |
58 | } else |
59 | encoder->encodeEnum("type" , KeyPathType::Null); |
60 | |
61 | return encoder->finishEncoding(); |
62 | } |
63 | |
64 | bool deserializeIDBKeyPath(const uint8_t* data, size_t size, Optional<IDBKeyPath>& result) |
65 | { |
66 | if (!data || !size) |
67 | return false; |
68 | |
69 | auto decoder = KeyedDecoder::decoder(data, size); |
70 | |
71 | KeyPathType type; |
72 | bool succeeded = decoder->decodeEnum("type" , type, [](KeyPathType value) { |
73 | return value == KeyPathType::Null || value == KeyPathType::String || value == KeyPathType::Array; |
74 | }); |
75 | if (!succeeded) |
76 | return false; |
77 | |
78 | switch (type) { |
79 | case KeyPathType::Null: |
80 | break; |
81 | case KeyPathType::String: { |
82 | String string; |
83 | if (!decoder->decodeString("string" , string)) |
84 | return false; |
85 | result = IDBKeyPath(WTFMove(string)); |
86 | break; |
87 | } |
88 | case KeyPathType::Array: { |
89 | Vector<String> vector; |
90 | succeeded = decoder->decodeObjects("array" , vector, [](KeyedDecoder& decoder, String& result) { |
91 | return decoder.decodeString("string" , result); |
92 | }); |
93 | if (!succeeded) |
94 | return false; |
95 | result = IDBKeyPath(WTFMove(vector)); |
96 | break; |
97 | } |
98 | } |
99 | return true; |
100 | } |
101 | |
102 | static bool isLegacySerializedIDBKeyData(const uint8_t* data, size_t size) |
103 | { |
104 | #if USE(CF) |
105 | UNUSED_PARAM(size); |
106 | |
107 | // This is the magic character that begins serialized PropertyLists, and tells us whether |
108 | // the key we're looking at is an old-style key. |
109 | static const uint8_t legacySerializedKeyVersion = 'b'; |
110 | if (data[0] == legacySerializedKeyVersion) |
111 | return true; |
112 | #elif USE(GLIB) |
113 | // KeyedEncoderGLib uses a GVariant dictionary, so check if the given data is a valid GVariant dictionary. |
114 | GRefPtr<GBytes> bytes = adoptGRef(g_bytes_new(data, size)); |
115 | GRefPtr<GVariant> variant = g_variant_new_from_bytes(G_VARIANT_TYPE("a{sv}" ), bytes.get(), FALSE); |
116 | return g_variant_is_normal_form(variant.get()); |
117 | #else |
118 | UNUSED_PARAM(data); |
119 | UNUSED_PARAM(size); |
120 | #endif |
121 | return false; |
122 | } |
123 | |
124 | |
125 | /* |
126 | The IDBKeyData serialization format is as follows: |
127 | [1 byte version header][Key Buffer] |
128 | |
129 | The Key Buffer serialization format is as follows: |
130 | [1 byte key type][Type specific data] |
131 | |
132 | Type specific serialization formats are as follows for each of the types: |
133 | Min: |
134 | [0 bytes] |
135 | |
136 | Number: |
137 | [8 bytes representing a double encoded in little endian] |
138 | |
139 | Date: |
140 | [8 bytes representing a double encoded in little endian] |
141 | |
142 | String: |
143 | [4 bytes representing string "length" in little endian]["length" number of 2-byte pairs representing ECMAScript 16-bit code units] |
144 | |
145 | Binary: |
146 | [8 bytes representing the "size" of the binary blob]["size" bytes] |
147 | |
148 | Array: |
149 | [8 bytes representing the "length" of the key array]["length" individual Key Buffer entries] |
150 | |
151 | Max: |
152 | [0 bytes] |
153 | */ |
154 | |
155 | static const uint8_t SIDBKeyVersion = 0x00; |
156 | enum class SIDBKeyType : uint8_t { |
157 | Min = 0x00, |
158 | Number = 0x20, |
159 | Date = 0x40, |
160 | String = 0x60, |
161 | Binary = 0x80, |
162 | Array = 0xA0, |
163 | Max = 0xFF, |
164 | }; |
165 | |
166 | static SIDBKeyType serializedTypeForKeyType(IndexedDB::KeyType type) |
167 | { |
168 | switch (type) { |
169 | case IndexedDB::KeyType::Min: |
170 | return SIDBKeyType::Min; |
171 | case IndexedDB::KeyType::Number: |
172 | return SIDBKeyType::Number; |
173 | case IndexedDB::KeyType::Date: |
174 | return SIDBKeyType::Date; |
175 | case IndexedDB::KeyType::String: |
176 | return SIDBKeyType::String; |
177 | case IndexedDB::KeyType::Binary: |
178 | return SIDBKeyType::Binary; |
179 | case IndexedDB::KeyType::Array: |
180 | return SIDBKeyType::Array; |
181 | case IndexedDB::KeyType::Max: |
182 | return SIDBKeyType::Max; |
183 | case IndexedDB::KeyType::Invalid: |
184 | RELEASE_ASSERT_NOT_REACHED(); |
185 | }; |
186 | |
187 | RELEASE_ASSERT_NOT_REACHED(); |
188 | } |
189 | |
190 | #if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN) || CPU(NEEDS_ALIGNED_ACCESS) |
191 | template <typename T> static void writeLittleEndian(Vector<char>& buffer, T value) |
192 | { |
193 | for (unsigned i = 0; i < sizeof(T); i++) { |
194 | buffer.append(value & 0xFF); |
195 | value >>= 8; |
196 | } |
197 | } |
198 | |
199 | template <typename T> static bool readLittleEndian(const uint8_t*& ptr, const uint8_t* end, T& value) |
200 | { |
201 | if (ptr > end - sizeof(value)) |
202 | return false; |
203 | |
204 | value = 0; |
205 | for (size_t i = 0; i < sizeof(T); i++) |
206 | value += ((T)*ptr++) << (i * 8); |
207 | return true; |
208 | } |
209 | #else |
210 | template <typename T> static void writeLittleEndian(Vector<char>& buffer, T value) |
211 | { |
212 | buffer.append(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
213 | } |
214 | |
215 | template <typename T> static bool readLittleEndian(const uint8_t*& ptr, const uint8_t* end, T& value) |
216 | { |
217 | if (ptr > end - sizeof(value)) |
218 | return false; |
219 | |
220 | value = *reinterpret_cast<const T*>(ptr); |
221 | ptr += sizeof(T); |
222 | |
223 | return true; |
224 | } |
225 | #endif |
226 | |
227 | static void writeDouble(Vector<char>& data, double d) |
228 | { |
229 | writeLittleEndian(data, *reinterpret_cast<uint64_t*>(&d)); |
230 | } |
231 | |
232 | static bool readDouble(const uint8_t*& data, const uint8_t* end, double& d) |
233 | { |
234 | return readLittleEndian(data, end, *reinterpret_cast<uint64_t*>(&d)); |
235 | } |
236 | |
237 | static void encodeKey(Vector<char>& data, const IDBKeyData& key) |
238 | { |
239 | SIDBKeyType type = serializedTypeForKeyType(key.type()); |
240 | data.append(static_cast<char>(type)); |
241 | |
242 | switch (type) { |
243 | case SIDBKeyType::Number: |
244 | writeDouble(data, key.number()); |
245 | break; |
246 | case SIDBKeyType::Date: |
247 | writeDouble(data, key.date()); |
248 | break; |
249 | case SIDBKeyType::String: { |
250 | auto string = key.string(); |
251 | uint32_t length = string.length(); |
252 | writeLittleEndian(data, length); |
253 | |
254 | for (size_t i = 0; i < length; ++i) |
255 | writeLittleEndian(data, string[i]); |
256 | |
257 | break; |
258 | } |
259 | case SIDBKeyType::Binary: { |
260 | auto& buffer = key.binary(); |
261 | uint64_t size = buffer.size(); |
262 | writeLittleEndian(data, size); |
263 | |
264 | auto* bufferData = buffer.data(); |
265 | ASSERT(bufferData || !size); |
266 | if (bufferData) |
267 | data.append(bufferData->data(), bufferData->size()); |
268 | |
269 | break; |
270 | } |
271 | case SIDBKeyType::Array: { |
272 | auto& array = key.array(); |
273 | uint64_t size = array.size(); |
274 | writeLittleEndian(data, size); |
275 | for (auto& key : array) |
276 | encodeKey(data, key); |
277 | |
278 | break; |
279 | } |
280 | case SIDBKeyType::Min: |
281 | case SIDBKeyType::Max: |
282 | break; |
283 | } |
284 | } |
285 | |
286 | RefPtr<SharedBuffer> serializeIDBKeyData(const IDBKeyData& key) |
287 | { |
288 | Vector<char> data; |
289 | data.append(SIDBKeyVersion); |
290 | |
291 | encodeKey(data, key); |
292 | return SharedBuffer::create(WTFMove(data)); |
293 | } |
294 | |
295 | static bool decodeKey(const uint8_t*& data, const uint8_t* end, IDBKeyData& result) |
296 | { |
297 | if (!data || data >= end) |
298 | return false; |
299 | |
300 | SIDBKeyType type = static_cast<SIDBKeyType>(data++[0]); |
301 | switch (type) { |
302 | case SIDBKeyType::Min: |
303 | result = IDBKeyData::minimum(); |
304 | return true; |
305 | case SIDBKeyType::Max: |
306 | result = IDBKeyData::maximum(); |
307 | return true; |
308 | case SIDBKeyType::Number: { |
309 | double d; |
310 | if (!readDouble(data, end, d)) |
311 | return false; |
312 | |
313 | result.setNumberValue(d); |
314 | return true; |
315 | } |
316 | case SIDBKeyType::Date: { |
317 | double d; |
318 | if (!readDouble(data, end, d)) |
319 | return false; |
320 | |
321 | result.setDateValue(d); |
322 | return true; |
323 | } |
324 | case SIDBKeyType::String: { |
325 | uint32_t length; |
326 | if (!readLittleEndian(data, end, length)) |
327 | return false; |
328 | |
329 | if (static_cast<uint64_t>(end - data) < length * 2) |
330 | return false; |
331 | |
332 | Vector<UChar> buffer; |
333 | buffer.reserveInitialCapacity(length); |
334 | for (size_t i = 0; i < length; i++) { |
335 | uint16_t ch; |
336 | if (!readLittleEndian(data, end, ch)) |
337 | return false; |
338 | buffer.uncheckedAppend(ch); |
339 | } |
340 | |
341 | result.setStringValue(String::adopt(WTFMove(buffer))); |
342 | |
343 | return true; |
344 | } |
345 | case SIDBKeyType::Binary: { |
346 | uint64_t size64; |
347 | if (!readLittleEndian(data, end, size64)) |
348 | return false; |
349 | |
350 | if (static_cast<uint64_t>(end - data) < size64) |
351 | return false; |
352 | |
353 | if (size64 > std::numeric_limits<size_t>::max()) |
354 | return false; |
355 | |
356 | size_t size = static_cast<size_t>(size64); |
357 | Vector<uint8_t> dataVector; |
358 | |
359 | dataVector.append(data, size); |
360 | data += size; |
361 | |
362 | result.setBinaryValue(ThreadSafeDataBuffer::create(WTFMove(dataVector))); |
363 | return true; |
364 | } |
365 | case SIDBKeyType::Array: { |
366 | uint64_t size64; |
367 | if (!readLittleEndian(data, end, size64)) |
368 | return false; |
369 | |
370 | if (size64 > std::numeric_limits<size_t>::max()) |
371 | return false; |
372 | |
373 | size_t size = static_cast<size_t>(size64); |
374 | Vector<IDBKeyData> array; |
375 | array.reserveInitialCapacity(size); |
376 | |
377 | for (size_t i = 0; i < size; ++i) { |
378 | IDBKeyData keyData; |
379 | if (!decodeKey(data, end, keyData)) |
380 | return false; |
381 | |
382 | ASSERT(keyData.isValid()); |
383 | array.uncheckedAppend(WTFMove(keyData)); |
384 | } |
385 | |
386 | result.setArrayValue(array); |
387 | |
388 | return true; |
389 | } |
390 | default: |
391 | LOG_ERROR("decodeKey encountered unexpected type: %i" , (int)type); |
392 | return false; |
393 | } |
394 | } |
395 | |
396 | bool deserializeIDBKeyData(const uint8_t* data, size_t size, IDBKeyData& result) |
397 | { |
398 | if (!data || !size) |
399 | return false; |
400 | |
401 | if (isLegacySerializedIDBKeyData(data, size)) { |
402 | auto decoder = KeyedDecoder::decoder(data, size); |
403 | return IDBKeyData::decode(*decoder, result); |
404 | } |
405 | |
406 | // Verify this is a SerializedIDBKey version we understand. |
407 | const uint8_t* current = data; |
408 | const uint8_t* end = data + size; |
409 | if (current++[0] != SIDBKeyVersion) |
410 | return false; |
411 | |
412 | if (decodeKey(current, end, result)) { |
413 | // Even if we successfully decoded a key, the deserialize is only successful |
414 | // if we actually consumed all input data. |
415 | return current == end; |
416 | } |
417 | |
418 | return false; |
419 | } |
420 | |
421 | } // namespace WebCore |
422 | |
423 | #endif // ENABLE(INDEXED_DATABASE) |
424 | |