| 1 | // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions are |
| 4 | // met: |
| 5 | // |
| 6 | // * Redistributions of source code must retain the above copyright |
| 7 | // notice, this list of conditions and the following disclaimer. |
| 8 | // * Redistributions in binary form must reproduce the above |
| 9 | // copyright notice, this list of conditions and the following |
| 10 | // disclaimer in the documentation and/or other materials provided |
| 11 | // with the distribution. |
| 12 | // * Neither the name of Google Inc. nor the names of its |
| 13 | // contributors may be used to endorse or promote products derived |
| 14 | // from this software without specific prior written permission. |
| 15 | // |
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | |
| 28 | #include "config.h" |
| 29 | |
| 30 | #include <climits> |
| 31 | #include <locale> |
| 32 | #include <cmath> |
| 33 | |
| 34 | #include <wtf/dtoa/double-conversion.h> |
| 35 | |
| 36 | #include <wtf/dtoa/bignum-dtoa.h> |
| 37 | #include <wtf/dtoa/fast-dtoa.h> |
| 38 | #include <wtf/dtoa/fixed-dtoa.h> |
| 39 | #include <wtf/dtoa/ieee.h> |
| 40 | #include <wtf/dtoa/strtod.h> |
| 41 | #include <wtf/dtoa/utils.h> |
| 42 | |
| 43 | #include <wtf/ASCIICType.h> |
| 44 | |
| 45 | namespace WTF { |
| 46 | namespace double_conversion { |
| 47 | |
| 48 | const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() { |
| 49 | int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN; |
| 50 | static DoubleToStringConverter converter(flags, |
| 51 | "Infinity" , |
| 52 | "NaN" , |
| 53 | 'e', |
| 54 | -6, 21, |
| 55 | 6, 0); |
| 56 | return converter; |
| 57 | } |
| 58 | |
| 59 | |
| 60 | bool DoubleToStringConverter::HandleSpecialValues( |
| 61 | double value, |
| 62 | StringBuilder* result_builder) const { |
| 63 | Double double_inspect(value); |
| 64 | if (double_inspect.IsInfinite()) { |
| 65 | if (infinity_symbol_ == NULL) return false; |
| 66 | if (value < 0) { |
| 67 | result_builder->AddCharacter('-'); |
| 68 | } |
| 69 | result_builder->AddString(infinity_symbol_); |
| 70 | return true; |
| 71 | } |
| 72 | if (double_inspect.IsNan()) { |
| 73 | if (nan_symbol_ == NULL) return false; |
| 74 | result_builder->AddString(nan_symbol_); |
| 75 | return true; |
| 76 | } |
| 77 | return false; |
| 78 | } |
| 79 | |
| 80 | |
| 81 | void DoubleToStringConverter::CreateExponentialRepresentation( |
| 82 | const char* decimal_digits, |
| 83 | int length, |
| 84 | int exponent, |
| 85 | StringBuilder* result_builder) const { |
| 86 | ASSERT(length != 0); |
| 87 | result_builder->AddCharacter(decimal_digits[0]); |
| 88 | if (length != 1) { |
| 89 | result_builder->AddCharacter('.'); |
| 90 | result_builder->AddSubstring(&decimal_digits[1], length-1); |
| 91 | } |
| 92 | result_builder->AddCharacter(exponent_character_); |
| 93 | if (exponent < 0) { |
| 94 | result_builder->AddCharacter('-'); |
| 95 | exponent = -exponent; |
| 96 | } else { |
| 97 | if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) { |
| 98 | result_builder->AddCharacter('+'); |
| 99 | } |
| 100 | } |
| 101 | if (exponent == 0) { |
| 102 | result_builder->AddCharacter('0'); |
| 103 | return; |
| 104 | } |
| 105 | ASSERT(exponent < 1e4); |
| 106 | const int kMaxExponentLength = 5; |
| 107 | char buffer[kMaxExponentLength + 1]; |
| 108 | buffer[kMaxExponentLength] = '\0'; |
| 109 | int first_char_pos = kMaxExponentLength; |
| 110 | while (exponent > 0) { |
| 111 | buffer[--first_char_pos] = '0' + (exponent % 10); |
| 112 | exponent /= 10; |
| 113 | } |
| 114 | result_builder->AddSubstring(&buffer[first_char_pos], |
| 115 | kMaxExponentLength - first_char_pos); |
| 116 | } |
| 117 | |
| 118 | |
| 119 | void DoubleToStringConverter::CreateDecimalRepresentation( |
| 120 | const char* decimal_digits, |
| 121 | int length, |
| 122 | int decimal_point, |
| 123 | int digits_after_point, |
| 124 | StringBuilder* result_builder) const { |
| 125 | // Create a representation that is padded with zeros if needed. |
| 126 | if (decimal_point <= 0) { |
| 127 | // "0.00000decimal_rep" or "0.000decimal_rep00". |
| 128 | result_builder->AddCharacter('0'); |
| 129 | if (digits_after_point > 0) { |
| 130 | result_builder->AddCharacter('.'); |
| 131 | result_builder->AddPadding('0', -decimal_point); |
| 132 | ASSERT(length <= digits_after_point - (-decimal_point)); |
| 133 | result_builder->AddSubstring(decimal_digits, length); |
| 134 | int remaining_digits = digits_after_point - (-decimal_point) - length; |
| 135 | result_builder->AddPadding('0', remaining_digits); |
| 136 | } |
| 137 | } else if (decimal_point >= length) { |
| 138 | // "decimal_rep0000.00000" or "decimal_rep.0000". |
| 139 | result_builder->AddSubstring(decimal_digits, length); |
| 140 | result_builder->AddPadding('0', decimal_point - length); |
| 141 | if (digits_after_point > 0) { |
| 142 | result_builder->AddCharacter('.'); |
| 143 | result_builder->AddPadding('0', digits_after_point); |
| 144 | } |
| 145 | } else { |
| 146 | // "decima.l_rep000". |
| 147 | ASSERT(digits_after_point > 0); |
| 148 | result_builder->AddSubstring(decimal_digits, decimal_point); |
| 149 | result_builder->AddCharacter('.'); |
| 150 | ASSERT(length - decimal_point <= digits_after_point); |
| 151 | result_builder->AddSubstring(&decimal_digits[decimal_point], |
| 152 | length - decimal_point); |
| 153 | int remaining_digits = digits_after_point - (length - decimal_point); |
| 154 | result_builder->AddPadding('0', remaining_digits); |
| 155 | } |
| 156 | if (digits_after_point == 0) { |
| 157 | if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) { |
| 158 | result_builder->AddCharacter('.'); |
| 159 | } |
| 160 | if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) { |
| 161 | result_builder->AddCharacter('0'); |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | |
| 167 | bool DoubleToStringConverter::ToShortestIeeeNumber( |
| 168 | double value, |
| 169 | StringBuilder* result_builder, |
| 170 | DoubleToStringConverter::DtoaMode mode) const { |
| 171 | ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE); |
| 172 | if (Double(value).IsSpecial()) { |
| 173 | return HandleSpecialValues(value, result_builder); |
| 174 | } |
| 175 | |
| 176 | int decimal_point; |
| 177 | bool sign; |
| 178 | const int kDecimalRepCapacity = kBase10MaximalLength + 1; |
| 179 | char decimal_rep[kDecimalRepCapacity]; |
| 180 | int decimal_rep_length; |
| 181 | |
| 182 | DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity, |
| 183 | &sign, &decimal_rep_length, &decimal_point); |
| 184 | |
| 185 | bool unique_zero = (flags_ & UNIQUE_ZERO) != 0; |
| 186 | if (sign && (value != 0.0 || !unique_zero)) { |
| 187 | result_builder->AddCharacter('-'); |
| 188 | } |
| 189 | |
| 190 | int exponent = decimal_point - 1; |
| 191 | if ((decimal_in_shortest_low_ <= exponent) && |
| 192 | (exponent < decimal_in_shortest_high_)) { |
| 193 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, |
| 194 | decimal_point, |
| 195 | Max(0, decimal_rep_length - decimal_point), |
| 196 | result_builder); |
| 197 | } else { |
| 198 | CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent, |
| 199 | result_builder); |
| 200 | } |
| 201 | return true; |
| 202 | } |
| 203 | |
| 204 | |
| 205 | bool DoubleToStringConverter::ToFixed(double value, |
| 206 | int requested_digits, |
| 207 | StringBuilder* result_builder) const { |
| 208 | ASSERT(kMaxFixedDigitsBeforePoint == 60); |
| 209 | const double kFirstNonFixed = 1e60; |
| 210 | |
| 211 | if (Double(value).IsSpecial()) { |
| 212 | return HandleSpecialValues(value, result_builder); |
| 213 | } |
| 214 | |
| 215 | if (requested_digits > kMaxFixedDigitsAfterPoint) return false; |
| 216 | if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false; |
| 217 | |
| 218 | // Find a sufficiently precise decimal representation of n. |
| 219 | int decimal_point; |
| 220 | bool sign; |
| 221 | // Add space for the '\0' byte. |
| 222 | const int kDecimalRepCapacity = |
| 223 | kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1; |
| 224 | char decimal_rep[kDecimalRepCapacity]; |
| 225 | int decimal_rep_length; |
| 226 | DoubleToAscii(value, FIXED, requested_digits, |
| 227 | decimal_rep, kDecimalRepCapacity, |
| 228 | &sign, &decimal_rep_length, &decimal_point); |
| 229 | |
| 230 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 231 | if (sign && (value != 0.0 || !unique_zero)) { |
| 232 | result_builder->AddCharacter('-'); |
| 233 | } |
| 234 | |
| 235 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
| 236 | requested_digits, result_builder); |
| 237 | return true; |
| 238 | } |
| 239 | |
| 240 | |
| 241 | bool DoubleToStringConverter::ToExponential( |
| 242 | double value, |
| 243 | int requested_digits, |
| 244 | StringBuilder* result_builder) const { |
| 245 | if (Double(value).IsSpecial()) { |
| 246 | return HandleSpecialValues(value, result_builder); |
| 247 | } |
| 248 | |
| 249 | if (requested_digits < -1) return false; |
| 250 | if (requested_digits > kMaxExponentialDigits) return false; |
| 251 | |
| 252 | int decimal_point; |
| 253 | bool sign; |
| 254 | // Add space for digit before the decimal point and the '\0' character. |
| 255 | const int kDecimalRepCapacity = kMaxExponentialDigits + 2; |
| 256 | ASSERT(kDecimalRepCapacity > kBase10MaximalLength); |
| 257 | char decimal_rep[kDecimalRepCapacity]; |
| 258 | int decimal_rep_length; |
| 259 | |
| 260 | if (requested_digits == -1) { |
| 261 | DoubleToAscii(value, SHORTEST, 0, |
| 262 | decimal_rep, kDecimalRepCapacity, |
| 263 | &sign, &decimal_rep_length, &decimal_point); |
| 264 | } else { |
| 265 | DoubleToAscii(value, PRECISION, requested_digits + 1, |
| 266 | decimal_rep, kDecimalRepCapacity, |
| 267 | &sign, &decimal_rep_length, &decimal_point); |
| 268 | ASSERT(decimal_rep_length <= requested_digits + 1); |
| 269 | |
| 270 | for (int i = decimal_rep_length; i < requested_digits + 1; ++i) { |
| 271 | decimal_rep[i] = '0'; |
| 272 | } |
| 273 | decimal_rep_length = requested_digits + 1; |
| 274 | } |
| 275 | |
| 276 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 277 | if (sign && (value != 0.0 || !unique_zero)) { |
| 278 | result_builder->AddCharacter('-'); |
| 279 | } |
| 280 | |
| 281 | int exponent = decimal_point - 1; |
| 282 | CreateExponentialRepresentation(decimal_rep, |
| 283 | decimal_rep_length, |
| 284 | exponent, |
| 285 | result_builder); |
| 286 | return true; |
| 287 | } |
| 288 | |
| 289 | |
| 290 | bool DoubleToStringConverter::ToPrecision(double value, |
| 291 | int precision, |
| 292 | StringBuilder* result_builder) const { |
| 293 | if (Double(value).IsSpecial()) { |
| 294 | return HandleSpecialValues(value, result_builder); |
| 295 | } |
| 296 | |
| 297 | if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) { |
| 298 | return false; |
| 299 | } |
| 300 | |
| 301 | // Find a sufficiently precise decimal representation of n. |
| 302 | int decimal_point; |
| 303 | bool sign; |
| 304 | // Add one for the terminating null character. |
| 305 | const int kDecimalRepCapacity = kMaxPrecisionDigits + 1; |
| 306 | char decimal_rep[kDecimalRepCapacity]; |
| 307 | int decimal_rep_length; |
| 308 | |
| 309 | DoubleToAscii(value, PRECISION, precision, |
| 310 | decimal_rep, kDecimalRepCapacity, |
| 311 | &sign, &decimal_rep_length, &decimal_point); |
| 312 | ASSERT(decimal_rep_length <= precision); |
| 313 | |
| 314 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 315 | if (sign && (value != 0.0 || !unique_zero)) { |
| 316 | result_builder->AddCharacter('-'); |
| 317 | } |
| 318 | |
| 319 | // The exponent if we print the number as x.xxeyyy. That is with the |
| 320 | // decimal point after the first digit. |
| 321 | int exponent = decimal_point - 1; |
| 322 | |
| 323 | int = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0; |
| 324 | if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) || |
| 325 | (decimal_point - precision + extra_zero > |
| 326 | max_trailing_padding_zeroes_in_precision_mode_)) { |
| 327 | // Fill buffer to contain 'precision' digits. |
| 328 | // Usually the buffer is already at the correct length, but 'DoubleToAscii' |
| 329 | // is allowed to return less characters. |
| 330 | for (int i = decimal_rep_length; i < precision; ++i) { |
| 331 | decimal_rep[i] = '0'; |
| 332 | } |
| 333 | |
| 334 | CreateExponentialRepresentation(decimal_rep, |
| 335 | precision, |
| 336 | exponent, |
| 337 | result_builder); |
| 338 | } else { |
| 339 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
| 340 | Max(0, precision - decimal_point), |
| 341 | result_builder); |
| 342 | } |
| 343 | return true; |
| 344 | } |
| 345 | |
| 346 | |
| 347 | static BignumDtoaMode DtoaToBignumDtoaMode( |
| 348 | DoubleToStringConverter::DtoaMode dtoa_mode) { |
| 349 | switch (dtoa_mode) { |
| 350 | case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST; |
| 351 | case DoubleToStringConverter::SHORTEST_SINGLE: |
| 352 | return BIGNUM_DTOA_SHORTEST_SINGLE; |
| 353 | case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED; |
| 354 | case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION; |
| 355 | default: |
| 356 | UNREACHABLE(); |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | |
| 361 | void DoubleToStringConverter::DoubleToAscii(double v, |
| 362 | DtoaMode mode, |
| 363 | int requested_digits, |
| 364 | char* buffer, |
| 365 | int buffer_length, |
| 366 | bool* sign, |
| 367 | int* length, |
| 368 | int* point) { |
| 369 | BufferReference<char> bufferReference(buffer, buffer_length); |
| 370 | ASSERT(!Double(v).IsSpecial()); |
| 371 | ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0); |
| 372 | |
| 373 | if (Double(v).Sign() < 0) { |
| 374 | *sign = true; |
| 375 | v = -v; |
| 376 | } else { |
| 377 | *sign = false; |
| 378 | } |
| 379 | |
| 380 | if (mode == PRECISION && requested_digits == 0) { |
| 381 | bufferReference[0] = '\0'; |
| 382 | *length = 0; |
| 383 | return; |
| 384 | } |
| 385 | |
| 386 | if (v == 0) { |
| 387 | bufferReference[0] = '0'; |
| 388 | bufferReference[1] = '\0'; |
| 389 | *length = 1; |
| 390 | *point = 1; |
| 391 | return; |
| 392 | } |
| 393 | |
| 394 | bool fast_worked; |
| 395 | switch (mode) { |
| 396 | case SHORTEST: |
| 397 | fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, bufferReference, length, point); |
| 398 | break; |
| 399 | case SHORTEST_SINGLE: |
| 400 | fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0, |
| 401 | bufferReference, length, point); |
| 402 | break; |
| 403 | case FIXED: |
| 404 | fast_worked = FastFixedDtoa(v, requested_digits, bufferReference, length, point); |
| 405 | break; |
| 406 | case PRECISION: |
| 407 | fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits, |
| 408 | bufferReference, length, point); |
| 409 | break; |
| 410 | default: |
| 411 | fast_worked = false; |
| 412 | UNREACHABLE(); |
| 413 | } |
| 414 | if (fast_worked) return; |
| 415 | |
| 416 | // If the fast dtoa didn't succeed use the slower bignum version. |
| 417 | BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode); |
| 418 | BignumDtoa(v, bignum_mode, requested_digits, bufferReference, length, point); |
| 419 | bufferReference[*length] = '\0'; |
| 420 | } |
| 421 | |
| 422 | // Maximum number of significant digits in decimal representation. |
| 423 | // The longest possible double in decimal representation is |
| 424 | // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 |
| 425 | // (768 digits). If we parse a number whose first digits are equal to a |
| 426 | // mean of 2 adjacent doubles (that could have up to 769 digits) the result |
| 427 | // must be rounded to the bigger one unless the tail consists of zeros, so |
| 428 | // we don't need to preserve all the digits. |
| 429 | const int kMaxSignificantDigits = 772; |
| 430 | |
| 431 | |
| 432 | static double SignedZero(bool sign) { |
| 433 | return sign ? -0.0 : 0.0; |
| 434 | } |
| 435 | |
| 436 | |
| 437 | // Returns true, when the iterator is equal to end. |
| 438 | template<class Iterator> |
| 439 | static inline bool Advance(Iterator* it, Iterator& end) { |
| 440 | ++(*it); |
| 441 | return *it == end; |
| 442 | } |
| 443 | |
| 444 | template <typename FloatingPointType> |
| 445 | inline FloatingPointType StringToFloatingPointType(BufferReference<const char> buffer, int exponent); |
| 446 | |
| 447 | template <> |
| 448 | inline double StringToFloatingPointType<double>(BufferReference<const char> buffer, int exponent) { |
| 449 | return Strtod(buffer, exponent); |
| 450 | } |
| 451 | |
| 452 | template <> |
| 453 | inline float StringToFloatingPointType<float>(BufferReference<const char> buffer, int exponent) { |
| 454 | return Strtof(buffer, exponent); |
| 455 | } |
| 456 | |
| 457 | template <typename FloatingPointType, class Iterator> |
| 458 | static FloatingPointType StringToIeee( |
| 459 | Iterator input, |
| 460 | size_t length, |
| 461 | size_t* processed_characters_count) { |
| 462 | static_assert(std::is_floating_point<FloatingPointType>::value, "Only floating point types are allowed." ); |
| 463 | |
| 464 | Iterator current = input; |
| 465 | Iterator end = input + length; |
| 466 | |
| 467 | *processed_characters_count = 0; |
| 468 | |
| 469 | // To make sure that iterator dereferencing is valid the following |
| 470 | // convention is used: |
| 471 | // 1. Each '++current' statement is followed by check for equality to 'end'. |
| 472 | // 3. If 'current' becomes equal to 'end' the function returns or goes to |
| 473 | // 'parsing_done'. |
| 474 | // 4. 'current' is not dereferenced after the 'parsing_done' label. |
| 475 | // 5. Code before 'parsing_done' may rely on 'current != end'. |
| 476 | |
| 477 | if (current == end) return 0.0; |
| 478 | |
| 479 | // The longest form of simplified number is: "-<significant digits>.1eXXX\0". |
| 480 | const int kBufferSize = kMaxSignificantDigits + 10; |
| 481 | char buffer[kBufferSize]; // NOLINT: size is known at compile time. |
| 482 | int buffer_pos = 0; |
| 483 | |
| 484 | // Exponent will be adjusted if insignificant digits of the integer part |
| 485 | // or insignificant leading zeros of the fractional part are dropped. |
| 486 | int exponent = 0; |
| 487 | int significant_digits = 0; |
| 488 | int insignificant_digits = 0; |
| 489 | bool nonzero_digit_dropped = false; |
| 490 | |
| 491 | bool sign = false; |
| 492 | |
| 493 | if (*current == '+' || *current == '-') { |
| 494 | sign = (*current == '-'); |
| 495 | ++current; |
| 496 | if (current == end) return 0.0; |
| 497 | } |
| 498 | |
| 499 | bool leading_zero = false; |
| 500 | if (*current == '0') { |
| 501 | if (Advance(¤t, end)) { |
| 502 | *processed_characters_count = static_cast<size_t>(current - input); |
| 503 | return SignedZero(sign); |
| 504 | } |
| 505 | |
| 506 | leading_zero = true; |
| 507 | |
| 508 | // Ignore leading zeros in the integer part. |
| 509 | while (*current == '0') { |
| 510 | if (Advance(¤t, end)) { |
| 511 | *processed_characters_count = static_cast<size_t>(current - input); |
| 512 | return SignedZero(sign); |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | // Copy significant digits of the integer part (if any) to the buffer. |
| 518 | while (isASCIIDigit(*current)) { |
| 519 | if (significant_digits < kMaxSignificantDigits) { |
| 520 | ASSERT(buffer_pos < kBufferSize); |
| 521 | buffer[buffer_pos++] = static_cast<char>(*current); |
| 522 | significant_digits++; |
| 523 | } else { |
| 524 | insignificant_digits++; // Move the digit into the exponential part. |
| 525 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 526 | } |
| 527 | if (Advance(¤t, end)) goto parsing_done; |
| 528 | } |
| 529 | |
| 530 | if (*current == '.') { |
| 531 | if (Advance(¤t, end)) { |
| 532 | if (significant_digits == 0 && !leading_zero) { |
| 533 | return 0.0; |
| 534 | } else { |
| 535 | goto parsing_done; |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | if (significant_digits == 0) { |
| 540 | // Integer part consists of 0 or is absent. Significant digits start after |
| 541 | // leading zeros (if any). |
| 542 | while (*current == '0') { |
| 543 | if (Advance(¤t, end)) { |
| 544 | *processed_characters_count = static_cast<size_t>(current - input); |
| 545 | return SignedZero(sign); |
| 546 | } |
| 547 | exponent--; // Move this 0 into the exponent. |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | // There is a fractional part. |
| 552 | // We don't emit a '.', but adjust the exponent instead. |
| 553 | while (isASCIIDigit(*current)) { |
| 554 | if (significant_digits < kMaxSignificantDigits) { |
| 555 | ASSERT(buffer_pos < kBufferSize); |
| 556 | buffer[buffer_pos++] = static_cast<char>(*current); |
| 557 | significant_digits++; |
| 558 | exponent--; |
| 559 | } else { |
| 560 | // Ignore insignificant digits in the fractional part. |
| 561 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 562 | } |
| 563 | if (Advance(¤t, end)) goto parsing_done; |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | if (!leading_zero && exponent == 0 && significant_digits == 0) { |
| 568 | // If leading_zeros is true then the string contains zeros. |
| 569 | // If exponent < 0 then string was [+-]\.0*... |
| 570 | // If significant_digits != 0 the string is not equal to 0. |
| 571 | // Otherwise there are no digits in the string. |
| 572 | return 0.0; |
| 573 | } |
| 574 | |
| 575 | // Parse exponential part. |
| 576 | if (*current == 'e' || *current == 'E') { |
| 577 | ++current; |
| 578 | if (current == end) { |
| 579 | --current; |
| 580 | goto parsing_done; |
| 581 | } |
| 582 | char exponen_sign = 0; |
| 583 | if (*current == '+' || *current == '-') { |
| 584 | exponen_sign = static_cast<char>(*current); |
| 585 | ++current; |
| 586 | if (current == end) { |
| 587 | current -= 2; |
| 588 | goto parsing_done; |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | if (*current < '0' || *current > '9') { |
| 593 | if (exponen_sign) |
| 594 | --current; |
| 595 | --current; |
| 596 | goto parsing_done; |
| 597 | } |
| 598 | |
| 599 | const int max_exponent = INT_MAX / 2; |
| 600 | ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); |
| 601 | int num = 0; |
| 602 | do { |
| 603 | // Check overflow. |
| 604 | int digit = *current - '0'; |
| 605 | if (num >= max_exponent / 10 |
| 606 | && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { |
| 607 | num = max_exponent; |
| 608 | } else { |
| 609 | num = num * 10 + digit; |
| 610 | } |
| 611 | ++current; |
| 612 | } while (current != end && isASCIIDigit(*current)); |
| 613 | |
| 614 | exponent += (exponen_sign == '-' ? -num : num); |
| 615 | } |
| 616 | |
| 617 | parsing_done: |
| 618 | exponent += insignificant_digits; |
| 619 | |
| 620 | if (nonzero_digit_dropped) { |
| 621 | buffer[buffer_pos++] = '1'; |
| 622 | exponent--; |
| 623 | } |
| 624 | |
| 625 | ASSERT(buffer_pos < kBufferSize); |
| 626 | buffer[buffer_pos] = '\0'; |
| 627 | |
| 628 | auto converted = StringToFloatingPointType<FloatingPointType>(BufferReference<const char>(buffer, buffer_pos), exponent); |
| 629 | *processed_characters_count = static_cast<size_t>(current - input); |
| 630 | return sign? -converted: converted; |
| 631 | } |
| 632 | |
| 633 | double StringToDoubleConverter::StringToDouble( |
| 634 | const char* buffer, |
| 635 | size_t length, |
| 636 | size_t* processed_characters_count) { |
| 637 | return StringToIeee<double>(buffer, length, processed_characters_count); |
| 638 | } |
| 639 | |
| 640 | |
| 641 | double StringToDoubleConverter::StringToDouble( |
| 642 | const uc16* buffer, |
| 643 | size_t length, |
| 644 | size_t* processed_characters_count) { |
| 645 | return StringToIeee<double>(buffer, length, processed_characters_count); |
| 646 | } |
| 647 | |
| 648 | |
| 649 | float StringToDoubleConverter::StringToFloat( |
| 650 | const char* buffer, |
| 651 | size_t length, |
| 652 | size_t* processed_characters_count) { |
| 653 | return StringToIeee<float>(buffer, length, processed_characters_count); |
| 654 | } |
| 655 | |
| 656 | |
| 657 | float StringToDoubleConverter::StringToFloat( |
| 658 | const uc16* buffer, |
| 659 | size_t length, |
| 660 | size_t* processed_characters_count) { |
| 661 | return StringToIeee<float>(buffer, length, processed_characters_count); |
| 662 | } |
| 663 | |
| 664 | } // namespace double_conversion |
| 665 | } // namespace WTF |
| 666 | |