| 1 | /* |
| 2 | * Copyright (C) 2015-2016 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "MathCommon.h" |
| 28 | |
| 29 | #include "PureNaN.h" |
| 30 | |
| 31 | namespace JSC { |
| 32 | |
| 33 | #if PLATFORM(IOS_FAMILY) && CPU(ARM_THUMB2) |
| 34 | |
| 35 | // The following code is taken from netlib.org: |
| 36 | // http://www.netlib.org/fdlibm/fdlibm.h |
| 37 | // http://www.netlib.org/fdlibm/e_pow.c |
| 38 | // http://www.netlib.org/fdlibm/s_scalbn.c |
| 39 | // |
| 40 | // And was originally distributed under the following license: |
| 41 | |
| 42 | /* |
| 43 | * ==================================================== |
| 44 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 45 | * |
| 46 | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 47 | * Permission to use, copy, modify, and distribute this |
| 48 | * software is freely granted, provided that this notice |
| 49 | * is preserved. |
| 50 | * ==================================================== |
| 51 | */ |
| 52 | /* |
| 53 | * ==================================================== |
| 54 | * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. |
| 55 | * |
| 56 | * Permission to use, copy, modify, and distribute this |
| 57 | * software is freely granted, provided that this notice |
| 58 | * is preserved. |
| 59 | * ==================================================== |
| 60 | */ |
| 61 | |
| 62 | /* __ieee754_pow(x,y) return x**y |
| 63 | * |
| 64 | * n |
| 65 | * Method: Let x = 2 * (1+f) |
| 66 | * 1. Compute and return log2(x) in two pieces: |
| 67 | * log2(x) = w1 + w2, |
| 68 | * where w1 has 53-24 = 29 bit trailing zeros. |
| 69 | * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
| 70 | * arithmetic, where |y'|<=0.5. |
| 71 | * 3. Return x**y = 2**n*exp(y'*log2) |
| 72 | * |
| 73 | * Special cases: |
| 74 | * 1. (anything) ** 0 is 1 |
| 75 | * 2. (anything) ** 1 is itself |
| 76 | * 3. (anything) ** NAN is NAN |
| 77 | * 4. NAN ** (anything except 0) is NAN |
| 78 | * 5. +-(|x| > 1) ** +INF is +INF |
| 79 | * 6. +-(|x| > 1) ** -INF is +0 |
| 80 | * 7. +-(|x| < 1) ** +INF is +0 |
| 81 | * 8. +-(|x| < 1) ** -INF is +INF |
| 82 | * 9. +-1 ** +-INF is NAN |
| 83 | * 10. +0 ** (+anything except 0, NAN) is +0 |
| 84 | * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
| 85 | * 12. +0 ** (-anything except 0, NAN) is +INF |
| 86 | * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
| 87 | * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
| 88 | * 15. +INF ** (+anything except 0,NAN) is +INF |
| 89 | * 16. +INF ** (-anything except 0,NAN) is +0 |
| 90 | * 17. -INF ** (anything) = -0 ** (-anything) |
| 91 | * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
| 92 | * 19. (-anything except 0 and inf) ** (non-integer) is NAN |
| 93 | * |
| 94 | * Accuracy: |
| 95 | * pow(x,y) returns x**y nearly rounded. In particular |
| 96 | * pow(integer,integer) |
| 97 | * always returns the correct integer provided it is |
| 98 | * representable. |
| 99 | * |
| 100 | * Constants : |
| 101 | * The hexadecimal values are the intended ones for the following |
| 102 | * constants. The decimal values may be used, provided that the |
| 103 | * compiler will convert from decimal to binary accurately enough |
| 104 | * to produce the hexadecimal values shown. |
| 105 | */ |
| 106 | |
| 107 | #define __HI(x) *(1+(int*)&x) |
| 108 | #define __LO(x) *(int*)&x |
| 109 | |
| 110 | static const double |
| 111 | bp[] = {1.0, 1.5,}, |
| 112 | dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ |
| 113 | dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ |
| 114 | zero = 0.0, |
| 115 | one = 1.0, |
| 116 | two = 2.0, |
| 117 | two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ |
| 118 | huge = 1.0e300, |
| 119 | tiny = 1.0e-300, |
| 120 | /* for scalbn */ |
| 121 | two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
| 122 | twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ |
| 123 | /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
| 124 | L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ |
| 125 | L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ |
| 126 | L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ |
| 127 | L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ |
| 128 | L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ |
| 129 | L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ |
| 130 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
| 131 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
| 132 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
| 133 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
| 134 | P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ |
| 135 | lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
| 136 | lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ |
| 137 | lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ |
| 138 | ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ |
| 139 | cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ |
| 140 | cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ |
| 141 | cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ |
| 142 | ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ |
| 143 | ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ |
| 144 | ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ |
| 145 | |
| 146 | inline double fdlibmScalbn (double x, int n) |
| 147 | { |
| 148 | int k,hx,lx; |
| 149 | hx = __HI(x); |
| 150 | lx = __LO(x); |
| 151 | k = (hx&0x7ff00000)>>20; /* extract exponent */ |
| 152 | if (k==0) { /* 0 or subnormal x */ |
| 153 | if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ |
| 154 | x *= two54; |
| 155 | hx = __HI(x); |
| 156 | k = ((hx&0x7ff00000)>>20) - 54; |
| 157 | if (n< -50000) return tiny*x; /*underflow*/ |
| 158 | } |
| 159 | if (k==0x7ff) return x+x; /* NaN or Inf */ |
| 160 | k = k+n; |
| 161 | if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */ |
| 162 | if (k > 0) /* normal result */ |
| 163 | {__HI(x) = (hx&0x800fffff)|(k<<20); return x;} |
| 164 | if (k <= -54) { |
| 165 | if (n > 50000) /* in case integer overflow in n+k */ |
| 166 | return huge*copysign(huge,x); /*overflow*/ |
| 167 | else return tiny*copysign(tiny,x); /*underflow*/ |
| 168 | } |
| 169 | k += 54; /* subnormal result */ |
| 170 | __HI(x) = (hx&0x800fffff)|(k<<20); |
| 171 | return x*twom54; |
| 172 | } |
| 173 | |
| 174 | static double fdlibmPow(double x, double y) |
| 175 | { |
| 176 | double z,ax,z_h,z_l,p_h,p_l; |
| 177 | double y1,t1,t2,r,s,t,u,v,w; |
| 178 | int i0,i1,i,j,k,yisint,n; |
| 179 | int hx,hy,ix,iy; |
| 180 | unsigned lx,ly; |
| 181 | |
| 182 | i0 = ((*(const int*)&one)>>29)^1; i1=1-i0; |
| 183 | hx = __HI(x); lx = __LO(x); |
| 184 | hy = __HI(y); ly = __LO(y); |
| 185 | ix = hx&0x7fffffff; iy = hy&0x7fffffff; |
| 186 | |
| 187 | /* y==zero: x**0 = 1 */ |
| 188 | if((iy|ly)==0) return one; |
| 189 | |
| 190 | /* +-NaN return x+y */ |
| 191 | if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || |
| 192 | iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) |
| 193 | return x+y; |
| 194 | |
| 195 | /* determine if y is an odd int when x < 0 |
| 196 | * yisint = 0 ... y is not an integer |
| 197 | * yisint = 1 ... y is an odd int |
| 198 | * yisint = 2 ... y is an even int |
| 199 | */ |
| 200 | yisint = 0; |
| 201 | if(hx<0) { |
| 202 | if(iy>=0x43400000) yisint = 2; /* even integer y */ |
| 203 | else if(iy>=0x3ff00000) { |
| 204 | k = (iy>>20)-0x3ff; /* exponent */ |
| 205 | if(k>20) { |
| 206 | j = ly>>(52-k); |
| 207 | if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1); |
| 208 | } else if(ly==0) { |
| 209 | j = iy>>(20-k); |
| 210 | if((j<<(20-k))==iy) yisint = 2-(j&1); |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | /* special value of y */ |
| 216 | if(ly==0) { |
| 217 | if (iy==0x7ff00000) { /* y is +-inf */ |
| 218 | if(((ix-0x3ff00000)|lx)==0) |
| 219 | return y - y; /* inf**+-1 is NaN */ |
| 220 | else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ |
| 221 | return (hy>=0)? y: zero; |
| 222 | else /* (|x|<1)**-,+inf = inf,0 */ |
| 223 | return (hy<0)?-y: zero; |
| 224 | } |
| 225 | if(iy==0x3ff00000) { /* y is +-1 */ |
| 226 | if(hy<0) return one/x; else return x; |
| 227 | } |
| 228 | if(hy==0x40000000) return x*x; /* y is 2 */ |
| 229 | if(hy==0x3fe00000) { /* y is 0.5 */ |
| 230 | if(hx>=0) /* x >= +0 */ |
| 231 | return sqrt(x); |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | ax = fabs(x); |
| 236 | /* special value of x */ |
| 237 | if(lx==0) { |
| 238 | if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ |
| 239 | z = ax; /*x is +-0,+-inf,+-1*/ |
| 240 | if(hy<0) z = one/z; /* z = (1/|x|) */ |
| 241 | if(hx<0) { |
| 242 | if(((ix-0x3ff00000)|yisint)==0) { |
| 243 | z = (z-z)/(z-z); /* (-1)**non-int is NaN */ |
| 244 | } else if(yisint==1) |
| 245 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
| 246 | } |
| 247 | return z; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | n = (hx>>31)+1; |
| 252 | |
| 253 | /* (x<0)**(non-int) is NaN */ |
| 254 | if((n|yisint)==0) return (x-x)/(x-x); |
| 255 | |
| 256 | s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
| 257 | if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ |
| 258 | |
| 259 | /* |y| is huge */ |
| 260 | if(iy>0x41e00000) { /* if |y| > 2**31 */ |
| 261 | if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ |
| 262 | if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
| 263 | if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
| 264 | } |
| 265 | /* over/underflow if x is not close to one */ |
| 266 | if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; |
| 267 | if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; |
| 268 | /* now |1-x| is tiny <= 2**-20, suffice to compute |
| 269 | log(x) by x-x^2/2+x^3/3-x^4/4 */ |
| 270 | t = ax-one; /* t has 20 trailing zeros */ |
| 271 | w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); |
| 272 | u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ |
| 273 | v = t*ivln2_l-w*ivln2; |
| 274 | t1 = u+v; |
| 275 | __LO(t1) = 0; |
| 276 | t2 = v-(t1-u); |
| 277 | } else { |
| 278 | double ss,s2,s_h,s_l,t_h,t_l; |
| 279 | n = 0; |
| 280 | /* take care subnormal number */ |
| 281 | if(ix<0x00100000) |
| 282 | {ax *= two53; n -= 53; ix = __HI(ax); } |
| 283 | n += ((ix)>>20)-0x3ff; |
| 284 | j = ix&0x000fffff; |
| 285 | /* determine interval */ |
| 286 | ix = j|0x3ff00000; /* normalize ix */ |
| 287 | if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ |
| 288 | else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ |
| 289 | else {k=0;n+=1;ix -= 0x00100000;} |
| 290 | __HI(ax) = ix; |
| 291 | |
| 292 | /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
| 293 | u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
| 294 | v = one/(ax+bp[k]); |
| 295 | ss = u*v; |
| 296 | s_h = ss; |
| 297 | __LO(s_h) = 0; |
| 298 | /* t_h=ax+bp[k] High */ |
| 299 | t_h = zero; |
| 300 | __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); |
| 301 | t_l = ax - (t_h-bp[k]); |
| 302 | s_l = v*((u-s_h*t_h)-s_h*t_l); |
| 303 | /* compute log(ax) */ |
| 304 | s2 = ss*ss; |
| 305 | r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); |
| 306 | r += s_l*(s_h+ss); |
| 307 | s2 = s_h*s_h; |
| 308 | t_h = 3.0+s2+r; |
| 309 | __LO(t_h) = 0; |
| 310 | t_l = r-((t_h-3.0)-s2); |
| 311 | /* u+v = ss*(1+...) */ |
| 312 | u = s_h*t_h; |
| 313 | v = s_l*t_h+t_l*ss; |
| 314 | /* 2/(3log2)*(ss+...) */ |
| 315 | p_h = u+v; |
| 316 | __LO(p_h) = 0; |
| 317 | p_l = v-(p_h-u); |
| 318 | z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
| 319 | z_l = cp_l*p_h+p_l*cp+dp_l[k]; |
| 320 | /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
| 321 | t = (double)n; |
| 322 | t1 = (((z_h+z_l)+dp_h[k])+t); |
| 323 | __LO(t1) = 0; |
| 324 | t2 = z_l-(((t1-t)-dp_h[k])-z_h); |
| 325 | } |
| 326 | |
| 327 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
| 328 | y1 = y; |
| 329 | __LO(y1) = 0; |
| 330 | p_l = (y-y1)*t1+y*t2; |
| 331 | p_h = y1*t1; |
| 332 | z = p_l+p_h; |
| 333 | j = __HI(z); |
| 334 | i = __LO(z); |
| 335 | if (j>=0x40900000) { /* z >= 1024 */ |
| 336 | if(((j-0x40900000)|i)!=0) /* if z > 1024 */ |
| 337 | return s*huge*huge; /* overflow */ |
| 338 | else { |
| 339 | if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ |
| 340 | } |
| 341 | } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ |
| 342 | if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ |
| 343 | return s*tiny*tiny; /* underflow */ |
| 344 | else { |
| 345 | if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ |
| 346 | } |
| 347 | } |
| 348 | /* |
| 349 | * compute 2**(p_h+p_l) |
| 350 | */ |
| 351 | i = j&0x7fffffff; |
| 352 | k = (i>>20)-0x3ff; |
| 353 | n = 0; |
| 354 | if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
| 355 | n = j+(0x00100000>>(k+1)); |
| 356 | k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ |
| 357 | t = zero; |
| 358 | __HI(t) = (n&~(0x000fffff>>k)); |
| 359 | n = ((n&0x000fffff)|0x00100000)>>(20-k); |
| 360 | if(j<0) n = -n; |
| 361 | p_h -= t; |
| 362 | } |
| 363 | t = p_l+p_h; |
| 364 | __LO(t) = 0; |
| 365 | u = t*lg2_h; |
| 366 | v = (p_l-(t-p_h))*lg2+t*lg2_l; |
| 367 | z = u+v; |
| 368 | w = v-(z-u); |
| 369 | t = z*z; |
| 370 | t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
| 371 | r = (z*t1)/(t1-two)-(w+z*w); |
| 372 | z = one-(r-z); |
| 373 | j = __HI(z); |
| 374 | j += (n<<20); |
| 375 | if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */ |
| 376 | else __HI(z) += (n<<20); |
| 377 | return s*z; |
| 378 | } |
| 379 | |
| 380 | static ALWAYS_INLINE bool isDenormal(double x) |
| 381 | { |
| 382 | static const uint64_t signbit = 0x8000000000000000ULL; |
| 383 | static const uint64_t minNormal = 0x0001000000000000ULL; |
| 384 | return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1; |
| 385 | } |
| 386 | |
| 387 | static ALWAYS_INLINE bool isEdgeCase(double x) |
| 388 | { |
| 389 | static const uint64_t signbit = 0x8000000000000000ULL; |
| 390 | static const uint64_t infinity = 0x7fffffffffffffffULL; |
| 391 | return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1; |
| 392 | } |
| 393 | |
| 394 | static ALWAYS_INLINE double mathPowInternal(double x, double y) |
| 395 | { |
| 396 | if (!isDenormal(x) && !isDenormal(y)) { |
| 397 | double libmResult = std::pow(x, y); |
| 398 | if (libmResult || isEdgeCase(x) || isEdgeCase(y)) |
| 399 | return libmResult; |
| 400 | } |
| 401 | return fdlibmPow(x, y); |
| 402 | } |
| 403 | |
| 404 | #else |
| 405 | |
| 406 | ALWAYS_INLINE double mathPowInternal(double x, double y) |
| 407 | { |
| 408 | return pow(x, y); |
| 409 | } |
| 410 | |
| 411 | #endif |
| 412 | |
| 413 | double JIT_OPERATION operationMathPow(double x, double y) |
| 414 | { |
| 415 | if (std::isnan(y)) |
| 416 | return PNaN; |
| 417 | double absoluteBase = fabs(x); |
| 418 | if (absoluteBase == 1 && std::isinf(y)) |
| 419 | return PNaN; |
| 420 | |
| 421 | if (y == 0.5) { |
| 422 | if (!absoluteBase) |
| 423 | return 0; |
| 424 | if (absoluteBase == std::numeric_limits<double>::infinity()) |
| 425 | return std::numeric_limits<double>::infinity(); |
| 426 | return sqrt(x); |
| 427 | } |
| 428 | |
| 429 | if (y == -0.5) { |
| 430 | if (!absoluteBase) |
| 431 | return std::numeric_limits<double>::infinity(); |
| 432 | if (absoluteBase == std::numeric_limits<double>::infinity()) |
| 433 | return 0.; |
| 434 | return 1. / sqrt(x); |
| 435 | } |
| 436 | |
| 437 | int32_t yAsInt = y; |
| 438 | if (static_cast<double>(yAsInt) == y && yAsInt >= 0 && yAsInt <= maxExponentForIntegerMathPow) { |
| 439 | // If the exponent is a small positive int32 integer, we do a fast exponentiation |
| 440 | double result = 1; |
| 441 | double xd = x; |
| 442 | while (yAsInt) { |
| 443 | if (yAsInt & 1) |
| 444 | result *= xd; |
| 445 | xd *= xd; |
| 446 | yAsInt >>= 1; |
| 447 | } |
| 448 | return result; |
| 449 | } |
| 450 | return mathPowInternal(x, y); |
| 451 | } |
| 452 | |
| 453 | int32_t JIT_OPERATION operationToInt32(double value) |
| 454 | { |
| 455 | return JSC::toInt32(value); |
| 456 | } |
| 457 | |
| 458 | int32_t JIT_OPERATION operationToInt32SensibleSlow(double number) |
| 459 | { |
| 460 | return toInt32Internal<ToInt32Mode::AfterSensibleConversionAttempt>(number); |
| 461 | } |
| 462 | |
| 463 | #if HAVE(ARM_IDIV_INSTRUCTIONS) |
| 464 | static inline bool isStrictInt32(double value) |
| 465 | { |
| 466 | int32_t valueAsInt32 = static_cast<int32_t>(value); |
| 467 | if (value != valueAsInt32) |
| 468 | return false; |
| 469 | |
| 470 | if (!valueAsInt32) { |
| 471 | if (std::signbit(value)) |
| 472 | return false; |
| 473 | } |
| 474 | return true; |
| 475 | } |
| 476 | #endif |
| 477 | |
| 478 | extern "C" { |
| 479 | double jsRound(double value) |
| 480 | { |
| 481 | double integer = ceil(value); |
| 482 | return integer - (integer - value > 0.5); |
| 483 | } |
| 484 | |
| 485 | #if CALLING_CONVENTION_IS_STDCALL || CPU(ARM_THUMB2) |
| 486 | double jsMod(double x, double y) |
| 487 | { |
| 488 | #if HAVE(ARM_IDIV_INSTRUCTIONS) |
| 489 | // fmod() does not have exact results for integer on ARMv7. |
| 490 | // When DFG/FTL use IDIV, the result of op_mod can change if we use fmod(). |
| 491 | // |
| 492 | // We implement here the same algorithm and conditions as the upper tier to keep |
| 493 | // a stable result when tiering up. |
| 494 | if (y) { |
| 495 | if (isStrictInt32(x) && isStrictInt32(y)) { |
| 496 | int32_t xAsInt32 = static_cast<int32_t>(x); |
| 497 | int32_t yAsInt32 = static_cast<int32_t>(y); |
| 498 | int32_t quotient = xAsInt32 / yAsInt32; |
| 499 | if (!productOverflows<int32_t>(quotient, yAsInt32)) { |
| 500 | int32_t remainder = xAsInt32 - (quotient * yAsInt32); |
| 501 | if (remainder || xAsInt32 >= 0) |
| 502 | return remainder; |
| 503 | } |
| 504 | } |
| 505 | } |
| 506 | #endif |
| 507 | return fmod(x, y); |
| 508 | } |
| 509 | #endif |
| 510 | } // extern "C" |
| 511 | |
| 512 | namespace Math { |
| 513 | |
| 514 | double JIT_OPERATION log1p(double value) |
| 515 | { |
| 516 | if (value == 0.0) |
| 517 | return value; |
| 518 | return std::log1p(value); |
| 519 | } |
| 520 | |
| 521 | } // namespace Math |
| 522 | } // namespace JSC |
| 523 | |