| 1 | /* |
| 2 | * Copyright (C) 2017 Caio Lima <ticaiolima@gmail.com> |
| 3 | * Copyright (C) 2017-2018 Apple Inc. All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 15 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 18 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | * |
| 26 | * Parts of the implementation below: |
| 27 | * |
| 28 | * Copyright 2017 the V8 project authors. All rights reserved. |
| 29 | * Use of this source code is governed by a BSD-style license that can be |
| 30 | * found in the LICENSE file. |
| 31 | * |
| 32 | * |
| 33 | * Copyright (c) 2014 the Dart project authors. Please see the AUTHORS file [1] |
| 34 | * for details. All rights reserved. Use of this source code is governed by a |
| 35 | * BSD-style license that can be found in the LICENSE file [2]. |
| 36 | * |
| 37 | * [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS |
| 38 | * [2] https://github.com/dart-lang/sdk/blob/master/LICENSE |
| 39 | * |
| 40 | * Copyright 2009 The Go Authors. All rights reserved. |
| 41 | * Use of this source code is governed by a BSD-style |
| 42 | * license that can be found in the LICENSE file [3]. |
| 43 | * |
| 44 | * [3] https://golang.org/LICENSE |
| 45 | */ |
| 46 | |
| 47 | #include "config.h" |
| 48 | #include "JSBigInt.h" |
| 49 | |
| 50 | #include "BigIntObject.h" |
| 51 | #include "CatchScope.h" |
| 52 | #include "JSCInlines.h" |
| 53 | #include "MathCommon.h" |
| 54 | #include "ParseInt.h" |
| 55 | #include <algorithm> |
| 56 | #include <wtf/MathExtras.h> |
| 57 | |
| 58 | #define STATIC_ASSERT(cond) static_assert(cond, "JSBigInt assumes " #cond) |
| 59 | |
| 60 | namespace JSC { |
| 61 | |
| 62 | const ClassInfo JSBigInt::s_info = |
| 63 | { "JSBigInt" , nullptr, nullptr, nullptr, CREATE_METHOD_TABLE(JSBigInt) }; |
| 64 | |
| 65 | JSBigInt::JSBigInt(VM& vm, Structure* structure, unsigned length) |
| 66 | : Base(vm, structure) |
| 67 | , m_length(length) |
| 68 | { } |
| 69 | |
| 70 | void JSBigInt::initialize(InitializationType initType) |
| 71 | { |
| 72 | if (initType == InitializationType::WithZero) |
| 73 | memset(dataStorage(), 0, length() * sizeof(Digit)); |
| 74 | } |
| 75 | |
| 76 | Structure* JSBigInt::createStructure(VM& vm, JSGlobalObject* globalObject, JSValue prototype) |
| 77 | { |
| 78 | return Structure::create(vm, globalObject, prototype, TypeInfo(BigIntType, StructureFlags), info()); |
| 79 | } |
| 80 | |
| 81 | JSBigInt* JSBigInt::createZero(VM& vm) |
| 82 | { |
| 83 | JSBigInt* zeroBigInt = createWithLengthUnchecked(vm, 0); |
| 84 | return zeroBigInt; |
| 85 | } |
| 86 | |
| 87 | inline size_t JSBigInt::allocationSize(unsigned length) |
| 88 | { |
| 89 | size_t sizeWithPadding = WTF::roundUpToMultipleOf<sizeof(size_t)>(sizeof(JSBigInt)); |
| 90 | return sizeWithPadding + length * sizeof(Digit); |
| 91 | } |
| 92 | |
| 93 | JSBigInt* JSBigInt::tryCreateWithLength(ExecState* exec, unsigned length) |
| 94 | { |
| 95 | VM& vm = exec->vm(); |
| 96 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 97 | |
| 98 | if (UNLIKELY(length > maxLength)) { |
| 99 | throwOutOfMemoryError(exec, scope); |
| 100 | return nullptr; |
| 101 | } |
| 102 | |
| 103 | scope.release(); |
| 104 | |
| 105 | return createWithLengthUnchecked(vm, length); |
| 106 | } |
| 107 | |
| 108 | JSBigInt* JSBigInt::createWithLengthUnchecked(VM& vm, unsigned length) |
| 109 | { |
| 110 | ASSERT(length <= maxLength); |
| 111 | JSBigInt* bigInt = new (NotNull, allocateCell<JSBigInt>(vm.heap, allocationSize(length))) JSBigInt(vm, vm.bigIntStructure.get(), length); |
| 112 | bigInt->finishCreation(vm); |
| 113 | return bigInt; |
| 114 | } |
| 115 | |
| 116 | JSBigInt* JSBigInt::createFrom(VM& vm, int32_t value) |
| 117 | { |
| 118 | if (!value) |
| 119 | return createZero(vm); |
| 120 | |
| 121 | JSBigInt* bigInt = createWithLengthUnchecked(vm, 1); |
| 122 | if (value < 0) { |
| 123 | bigInt->setDigit(0, static_cast<Digit>(-1 * static_cast<int64_t>(value))); |
| 124 | bigInt->setSign(true); |
| 125 | } else |
| 126 | bigInt->setDigit(0, static_cast<Digit>(value)); |
| 127 | |
| 128 | return bigInt; |
| 129 | } |
| 130 | |
| 131 | JSBigInt* JSBigInt::createFrom(VM& vm, uint32_t value) |
| 132 | { |
| 133 | if (!value) |
| 134 | return createZero(vm); |
| 135 | |
| 136 | JSBigInt* bigInt = createWithLengthUnchecked(vm, 1); |
| 137 | bigInt->setDigit(0, static_cast<Digit>(value)); |
| 138 | return bigInt; |
| 139 | } |
| 140 | |
| 141 | JSBigInt* JSBigInt::createFrom(VM& vm, int64_t value) |
| 142 | { |
| 143 | if (!value) |
| 144 | return createZero(vm); |
| 145 | |
| 146 | if (sizeof(Digit) == 8) { |
| 147 | JSBigInt* bigInt = createWithLengthUnchecked(vm, 1); |
| 148 | if (value < 0) { |
| 149 | bigInt->setDigit(0, static_cast<Digit>(static_cast<uint64_t>(-(value + 1)) + 1)); |
| 150 | bigInt->setSign(true); |
| 151 | } else |
| 152 | bigInt->setDigit(0, static_cast<Digit>(value)); |
| 153 | |
| 154 | return bigInt; |
| 155 | } |
| 156 | |
| 157 | JSBigInt* bigInt = createWithLengthUnchecked(vm, 2); |
| 158 | uint64_t tempValue; |
| 159 | bool sign = false; |
| 160 | if (value < 0) { |
| 161 | tempValue = static_cast<uint64_t>(-(value + 1)) + 1; |
| 162 | sign = true; |
| 163 | } else |
| 164 | tempValue = value; |
| 165 | |
| 166 | Digit lowBits = static_cast<Digit>(tempValue & 0xffffffff); |
| 167 | Digit highBits = static_cast<Digit>((tempValue >> 32) & 0xffffffff); |
| 168 | |
| 169 | bigInt->setDigit(0, lowBits); |
| 170 | bigInt->setDigit(1, highBits); |
| 171 | bigInt->setSign(sign); |
| 172 | |
| 173 | return bigInt; |
| 174 | } |
| 175 | |
| 176 | JSBigInt* JSBigInt::createFrom(VM& vm, bool value) |
| 177 | { |
| 178 | if (!value) |
| 179 | return createZero(vm); |
| 180 | |
| 181 | JSBigInt* bigInt = createWithLengthUnchecked(vm, 1); |
| 182 | bigInt->setDigit(0, static_cast<Digit>(value)); |
| 183 | return bigInt; |
| 184 | } |
| 185 | |
| 186 | JSValue JSBigInt::toPrimitive(ExecState*, PreferredPrimitiveType) const |
| 187 | { |
| 188 | return const_cast<JSBigInt*>(this); |
| 189 | } |
| 190 | |
| 191 | Optional<uint8_t> JSBigInt::singleDigitValueForString() |
| 192 | { |
| 193 | if (isZero()) |
| 194 | return 0; |
| 195 | |
| 196 | if (length() == 1 && !sign()) { |
| 197 | Digit rDigit = digit(0); |
| 198 | if (rDigit <= 9) |
| 199 | return static_cast<uint8_t>(rDigit); |
| 200 | } |
| 201 | return { }; |
| 202 | } |
| 203 | |
| 204 | JSBigInt* JSBigInt::parseInt(ExecState* exec, StringView s, ErrorParseMode parserMode) |
| 205 | { |
| 206 | if (s.is8Bit()) |
| 207 | return parseInt(exec, s.characters8(), s.length(), parserMode); |
| 208 | return parseInt(exec, s.characters16(), s.length(), parserMode); |
| 209 | } |
| 210 | |
| 211 | JSBigInt* JSBigInt::parseInt(ExecState* exec, VM& vm, StringView s, uint8_t radix, ErrorParseMode parserMode, ParseIntSign sign) |
| 212 | { |
| 213 | if (s.is8Bit()) |
| 214 | return parseInt(exec, vm, s.characters8(), s.length(), 0, radix, parserMode, sign, ParseIntMode::DisallowEmptyString); |
| 215 | return parseInt(exec, vm, s.characters16(), s.length(), 0, radix, parserMode, sign, ParseIntMode::DisallowEmptyString); |
| 216 | } |
| 217 | |
| 218 | JSBigInt* JSBigInt::stringToBigInt(ExecState* exec, StringView s) |
| 219 | { |
| 220 | return parseInt(exec, s, ErrorParseMode::IgnoreExceptions); |
| 221 | } |
| 222 | |
| 223 | String JSBigInt::toString(ExecState* exec, unsigned radix) |
| 224 | { |
| 225 | if (this->isZero()) |
| 226 | return exec->vm().smallStrings.singleCharacterStringRep('0'); |
| 227 | |
| 228 | if (hasOneBitSet(radix)) |
| 229 | return toStringBasePowerOfTwo(exec, this, radix); |
| 230 | |
| 231 | return toStringGeneric(exec, this, radix); |
| 232 | } |
| 233 | |
| 234 | // Multiplies {this} with {factor} and adds {summand} to the result. |
| 235 | void JSBigInt::inplaceMultiplyAdd(Digit factor, Digit summand) |
| 236 | { |
| 237 | internalMultiplyAdd(this, factor, summand, length(), this); |
| 238 | } |
| 239 | |
| 240 | JSBigInt* JSBigInt::multiply(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 241 | { |
| 242 | VM& vm = exec->vm(); |
| 243 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 244 | |
| 245 | if (x->isZero()) |
| 246 | return x; |
| 247 | if (y->isZero()) |
| 248 | return y; |
| 249 | |
| 250 | unsigned resultLength = x->length() + y->length(); |
| 251 | JSBigInt* result = JSBigInt::tryCreateWithLength(exec, resultLength); |
| 252 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 253 | result->initialize(InitializationType::WithZero); |
| 254 | |
| 255 | for (unsigned i = 0; i < x->length(); i++) |
| 256 | multiplyAccumulate(y, x->digit(i), result, i); |
| 257 | |
| 258 | result->setSign(x->sign() != y->sign()); |
| 259 | return result->rightTrim(vm); |
| 260 | } |
| 261 | |
| 262 | JSBigInt* JSBigInt::divide(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 263 | { |
| 264 | // 1. If y is 0n, throw a RangeError exception. |
| 265 | VM& vm = exec->vm(); |
| 266 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 267 | |
| 268 | if (y->isZero()) { |
| 269 | throwRangeError(exec, scope, "0 is an invalid divisor value."_s ); |
| 270 | return nullptr; |
| 271 | } |
| 272 | |
| 273 | // 2. Let quotient be the mathematical value of x divided by y. |
| 274 | // 3. Return a BigInt representing quotient rounded towards 0 to the next |
| 275 | // integral value. |
| 276 | if (absoluteCompare(x, y) == ComparisonResult::LessThan) |
| 277 | return createZero(vm); |
| 278 | |
| 279 | JSBigInt* quotient = nullptr; |
| 280 | bool resultSign = x->sign() != y->sign(); |
| 281 | if (y->length() == 1) { |
| 282 | Digit divisor = y->digit(0); |
| 283 | if (divisor == 1) |
| 284 | return resultSign == x->sign() ? x : unaryMinus(vm, x); |
| 285 | |
| 286 | Digit remainder; |
| 287 | absoluteDivWithDigitDivisor(vm, x, divisor, "ient, remainder); |
| 288 | } else { |
| 289 | absoluteDivWithBigIntDivisor(exec, x, y, "ient, nullptr); |
| 290 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 291 | } |
| 292 | |
| 293 | quotient->setSign(resultSign); |
| 294 | return quotient->rightTrim(vm); |
| 295 | } |
| 296 | |
| 297 | JSBigInt* JSBigInt::copy(VM& vm, JSBigInt* x) |
| 298 | { |
| 299 | ASSERT(!x->isZero()); |
| 300 | |
| 301 | JSBigInt* result = JSBigInt::createWithLengthUnchecked(vm, x->length()); |
| 302 | std::copy(x->dataStorage(), x->dataStorage() + x->length(), result->dataStorage()); |
| 303 | result->setSign(x->sign()); |
| 304 | return result; |
| 305 | } |
| 306 | |
| 307 | JSBigInt* JSBigInt::unaryMinus(VM& vm, JSBigInt* x) |
| 308 | { |
| 309 | if (x->isZero()) |
| 310 | return x; |
| 311 | |
| 312 | JSBigInt* result = copy(vm, x); |
| 313 | result->setSign(!x->sign()); |
| 314 | return result; |
| 315 | } |
| 316 | |
| 317 | JSBigInt* JSBigInt::remainder(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 318 | { |
| 319 | // 1. If y is 0n, throw a RangeError exception. |
| 320 | VM& vm = exec->vm(); |
| 321 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 322 | |
| 323 | if (y->isZero()) { |
| 324 | throwRangeError(exec, scope, "0 is an invalid divisor value."_s ); |
| 325 | return nullptr; |
| 326 | } |
| 327 | |
| 328 | // 2. Return the JSBigInt representing x modulo y. |
| 329 | // See https://github.com/tc39/proposal-bigint/issues/84 though. |
| 330 | if (absoluteCompare(x, y) == ComparisonResult::LessThan) |
| 331 | return x; |
| 332 | |
| 333 | JSBigInt* remainder; |
| 334 | if (y->length() == 1) { |
| 335 | Digit divisor = y->digit(0); |
| 336 | if (divisor == 1) |
| 337 | return createZero(vm); |
| 338 | |
| 339 | Digit remainderDigit; |
| 340 | absoluteDivWithDigitDivisor(vm, x, divisor, nullptr, remainderDigit); |
| 341 | if (!remainderDigit) |
| 342 | return createZero(vm); |
| 343 | |
| 344 | remainder = createWithLengthUnchecked(vm, 1); |
| 345 | remainder->setDigit(0, remainderDigit); |
| 346 | } else { |
| 347 | absoluteDivWithBigIntDivisor(exec, x, y, nullptr, &remainder); |
| 348 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 349 | } |
| 350 | |
| 351 | remainder->setSign(x->sign()); |
| 352 | return remainder->rightTrim(vm); |
| 353 | } |
| 354 | |
| 355 | JSBigInt* JSBigInt::add(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 356 | { |
| 357 | VM& vm = exec->vm(); |
| 358 | bool xSign = x->sign(); |
| 359 | |
| 360 | // x + y == x + y |
| 361 | // -x + -y == -(x + y) |
| 362 | if (xSign == y->sign()) |
| 363 | return absoluteAdd(exec, x, y, xSign); |
| 364 | |
| 365 | // x + -y == x - y == -(y - x) |
| 366 | // -x + y == y - x == -(x - y) |
| 367 | ComparisonResult comparisonResult = absoluteCompare(x, y); |
| 368 | if (comparisonResult == ComparisonResult::GreaterThan || comparisonResult == ComparisonResult::Equal) |
| 369 | return absoluteSub(vm, x, y, xSign); |
| 370 | |
| 371 | return absoluteSub(vm, y, x, !xSign); |
| 372 | } |
| 373 | |
| 374 | JSBigInt* JSBigInt::sub(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 375 | { |
| 376 | VM& vm = exec->vm(); |
| 377 | bool xSign = x->sign(); |
| 378 | if (xSign != y->sign()) { |
| 379 | // x - (-y) == x + y |
| 380 | // (-x) - y == -(x + y) |
| 381 | return absoluteAdd(exec, x, y, xSign); |
| 382 | } |
| 383 | // x - y == -(y - x) |
| 384 | // (-x) - (-y) == y - x == -(x - y) |
| 385 | ComparisonResult comparisonResult = absoluteCompare(x, y); |
| 386 | if (comparisonResult == ComparisonResult::GreaterThan || comparisonResult == ComparisonResult::Equal) |
| 387 | return absoluteSub(vm, x, y, xSign); |
| 388 | |
| 389 | return absoluteSub(vm, y, x, !xSign); |
| 390 | } |
| 391 | |
| 392 | JSBigInt* JSBigInt::bitwiseAnd(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 393 | { |
| 394 | VM& vm = exec->vm(); |
| 395 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 396 | |
| 397 | if (!x->sign() && !y->sign()) { |
| 398 | scope.release(); |
| 399 | return absoluteAnd(vm, x, y); |
| 400 | } |
| 401 | |
| 402 | if (x->sign() && y->sign()) { |
| 403 | int resultLength = std::max(x->length(), y->length()) + 1; |
| 404 | // (-x) & (-y) == ~(x-1) & ~(y-1) == ~((x-1) | (y-1)) |
| 405 | // == -(((x-1) | (y-1)) + 1) |
| 406 | JSBigInt* result = absoluteSubOne(exec, x, resultLength); |
| 407 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 408 | |
| 409 | JSBigInt* y1 = absoluteSubOne(exec, y, y->length()); |
| 410 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 411 | result = absoluteOr(vm, result, y1); |
| 412 | scope.release(); |
| 413 | return absoluteAddOne(exec, result, SignOption::Signed); |
| 414 | } |
| 415 | |
| 416 | ASSERT(x->sign() != y->sign()); |
| 417 | // Assume that x is the positive BigInt. |
| 418 | if (x->sign()) |
| 419 | std::swap(x, y); |
| 420 | |
| 421 | // x & (-y) == x & ~(y-1) == x & ~(y-1) |
| 422 | JSBigInt* y1 = absoluteSubOne(exec, y, y->length()); |
| 423 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 424 | return absoluteAndNot(vm, x, y1); |
| 425 | } |
| 426 | |
| 427 | JSBigInt* JSBigInt::bitwiseOr(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 428 | { |
| 429 | VM& vm = exec->vm(); |
| 430 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 431 | |
| 432 | unsigned resultLength = std::max(x->length(), y->length()); |
| 433 | |
| 434 | if (!x->sign() && !y->sign()) { |
| 435 | scope.release(); |
| 436 | return absoluteOr(vm, x, y); |
| 437 | } |
| 438 | |
| 439 | if (x->sign() && y->sign()) { |
| 440 | // (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1)) |
| 441 | // == -(((x-1) & (y-1)) + 1) |
| 442 | JSBigInt* result = absoluteSubOne(exec, x, resultLength); |
| 443 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 444 | JSBigInt* y1 = absoluteSubOne(exec, y, y->length()); |
| 445 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 446 | result = absoluteAnd(vm, result, y1); |
| 447 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 448 | |
| 449 | scope.release(); |
| 450 | return absoluteAddOne(exec, result, SignOption::Signed); |
| 451 | } |
| 452 | |
| 453 | ASSERT(x->sign() != y->sign()); |
| 454 | |
| 455 | // Assume that x is the positive BigInt. |
| 456 | if (x->sign()) |
| 457 | std::swap(x, y); |
| 458 | |
| 459 | // x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(((y-1) &~ x) + 1) |
| 460 | JSBigInt* result = absoluteSubOne(exec, y, resultLength); |
| 461 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 462 | result = absoluteAndNot(vm, result, x); |
| 463 | |
| 464 | scope.release(); |
| 465 | return absoluteAddOne(exec, result, SignOption::Signed); |
| 466 | } |
| 467 | |
| 468 | JSBigInt* JSBigInt::bitwiseXor(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 469 | { |
| 470 | VM& vm = exec->vm(); |
| 471 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 472 | |
| 473 | if (!x->sign() && !y->sign()) { |
| 474 | scope.release(); |
| 475 | return absoluteXor(vm, x, y); |
| 476 | } |
| 477 | |
| 478 | if (x->sign() && y->sign()) { |
| 479 | int resultLength = std::max(x->length(), y->length()); |
| 480 | |
| 481 | // (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1) |
| 482 | JSBigInt* result = absoluteSubOne(exec, x, resultLength); |
| 483 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 484 | JSBigInt* y1 = absoluteSubOne(exec, y, y->length()); |
| 485 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 486 | |
| 487 | scope.release(); |
| 488 | return absoluteXor(vm, result, y1); |
| 489 | } |
| 490 | ASSERT(x->sign() != y->sign()); |
| 491 | int resultLength = std::max(x->length(), y->length()) + 1; |
| 492 | |
| 493 | // Assume that x is the positive BigInt. |
| 494 | if (x->sign()) |
| 495 | std::swap(x, y); |
| 496 | |
| 497 | // x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1) |
| 498 | JSBigInt* result = absoluteSubOne(exec, y, resultLength); |
| 499 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 500 | |
| 501 | result = absoluteXor(vm, result, x); |
| 502 | scope.release(); |
| 503 | return absoluteAddOne(exec, result, SignOption::Signed); |
| 504 | } |
| 505 | |
| 506 | JSBigInt* JSBigInt::leftShift(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 507 | { |
| 508 | if (y->isZero() || x->isZero()) |
| 509 | return x; |
| 510 | |
| 511 | if (y->sign()) |
| 512 | return rightShiftByAbsolute(exec, x, y); |
| 513 | |
| 514 | return leftShiftByAbsolute(exec, x, y); |
| 515 | } |
| 516 | |
| 517 | JSBigInt* JSBigInt::signedRightShift(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 518 | { |
| 519 | if (y->isZero() || x->isZero()) |
| 520 | return x; |
| 521 | |
| 522 | if (y->sign()) |
| 523 | return leftShiftByAbsolute(exec, x, y); |
| 524 | |
| 525 | return rightShiftByAbsolute(exec, x, y); |
| 526 | } |
| 527 | |
| 528 | JSBigInt* JSBigInt::bitwiseNot(ExecState* exec, JSBigInt* x) |
| 529 | { |
| 530 | if (x->sign()) { |
| 531 | // ~(-x) == ~(~(x-1)) == x-1 |
| 532 | return absoluteSubOne(exec, x, x->length()); |
| 533 | } |
| 534 | // ~x == -x-1 == -(x+1) |
| 535 | return absoluteAddOne(exec, x, SignOption::Signed); |
| 536 | } |
| 537 | |
| 538 | #if USE(JSVALUE32_64) |
| 539 | #define HAVE_TWO_DIGIT 1 |
| 540 | typedef uint64_t TwoDigit; |
| 541 | #elif HAVE(INT128_T) |
| 542 | #define HAVE_TWO_DIGIT 1 |
| 543 | typedef __uint128_t TwoDigit; |
| 544 | #else |
| 545 | #define HAVE_TWO_DIGIT 0 |
| 546 | #endif |
| 547 | |
| 548 | // {carry} must point to an initialized Digit and will either be incremented |
| 549 | // by one or left alone. |
| 550 | inline JSBigInt::Digit JSBigInt::digitAdd(Digit a, Digit b, Digit& carry) |
| 551 | { |
| 552 | Digit result = a + b; |
| 553 | carry += static_cast<bool>(result < a); |
| 554 | return result; |
| 555 | } |
| 556 | |
| 557 | // {borrow} must point to an initialized Digit and will either be incremented |
| 558 | // by one or left alone. |
| 559 | inline JSBigInt::Digit JSBigInt::digitSub(Digit a, Digit b, Digit& borrow) |
| 560 | { |
| 561 | Digit result = a - b; |
| 562 | borrow += static_cast<bool>(result > a); |
| 563 | return result; |
| 564 | } |
| 565 | |
| 566 | // Returns the low half of the result. High half is in {high}. |
| 567 | inline JSBigInt::Digit JSBigInt::digitMul(Digit a, Digit b, Digit& high) |
| 568 | { |
| 569 | #if HAVE(TWO_DIGIT) |
| 570 | TwoDigit result = static_cast<TwoDigit>(a) * static_cast<TwoDigit>(b); |
| 571 | high = result >> digitBits; |
| 572 | |
| 573 | return static_cast<Digit>(result); |
| 574 | #else |
| 575 | // Multiply in half-pointer-sized chunks. |
| 576 | // For inputs [AH AL]*[BH BL], the result is: |
| 577 | // |
| 578 | // [AL*BL] // rLow |
| 579 | // + [AL*BH] // rMid1 |
| 580 | // + [AH*BL] // rMid2 |
| 581 | // + [AH*BH] // rHigh |
| 582 | // = [R4 R3 R2 R1] // high = [R4 R3], low = [R2 R1] |
| 583 | // |
| 584 | // Where of course we must be careful with carries between the columns. |
| 585 | Digit aLow = a & halfDigitMask; |
| 586 | Digit aHigh = a >> halfDigitBits; |
| 587 | Digit bLow = b & halfDigitMask; |
| 588 | Digit bHigh = b >> halfDigitBits; |
| 589 | |
| 590 | Digit rLow = aLow * bLow; |
| 591 | Digit rMid1 = aLow * bHigh; |
| 592 | Digit rMid2 = aHigh * bLow; |
| 593 | Digit rHigh = aHigh * bHigh; |
| 594 | |
| 595 | Digit carry = 0; |
| 596 | Digit low = digitAdd(rLow, rMid1 << halfDigitBits, carry); |
| 597 | low = digitAdd(low, rMid2 << halfDigitBits, carry); |
| 598 | |
| 599 | high = (rMid1 >> halfDigitBits) + (rMid2 >> halfDigitBits) + rHigh + carry; |
| 600 | |
| 601 | return low; |
| 602 | #endif |
| 603 | } |
| 604 | |
| 605 | // Raises {base} to the power of {exponent}. Does not check for overflow. |
| 606 | inline JSBigInt::Digit JSBigInt::digitPow(Digit base, Digit exponent) |
| 607 | { |
| 608 | Digit result = 1ull; |
| 609 | while (exponent > 0) { |
| 610 | if (exponent & 1) |
| 611 | result *= base; |
| 612 | |
| 613 | exponent >>= 1; |
| 614 | base *= base; |
| 615 | } |
| 616 | |
| 617 | return result; |
| 618 | } |
| 619 | |
| 620 | // Returns the quotient. |
| 621 | // quotient = (high << digitBits + low - remainder) / divisor |
| 622 | inline JSBigInt::Digit JSBigInt::digitDiv(Digit high, Digit low, Digit divisor, Digit& remainder) |
| 623 | { |
| 624 | ASSERT(high < divisor); |
| 625 | #if CPU(X86_64) && COMPILER(GCC_COMPATIBLE) |
| 626 | Digit quotient; |
| 627 | Digit rem; |
| 628 | __asm__("divq %[divisor]" |
| 629 | // Outputs: {quotient} will be in rax, {rem} in rdx. |
| 630 | : "=a" (quotient), "=d" (rem) |
| 631 | // Inputs: put {high} into rdx, {low} into rax, and {divisor} into |
| 632 | // any register or stack slot. |
| 633 | : "d" (high), "a" (low), [divisor] "rm" (divisor)); |
| 634 | remainder = rem; |
| 635 | return quotient; |
| 636 | #elif CPU(X86) && COMPILER(GCC_COMPATIBLE) |
| 637 | Digit quotient; |
| 638 | Digit rem; |
| 639 | __asm__("divl %[divisor]" |
| 640 | // Outputs: {quotient} will be in eax, {rem} in edx. |
| 641 | : "=a" (quotient), "=d" (rem) |
| 642 | // Inputs: put {high} into edx, {low} into eax, and {divisor} into |
| 643 | // any register or stack slot. |
| 644 | : "d" (high), "a" (low), [divisor] "rm" (divisor)); |
| 645 | remainder = rem; |
| 646 | return quotient; |
| 647 | #else |
| 648 | static constexpr Digit halfDigitBase = 1ull << halfDigitBits; |
| 649 | // Adapted from Warren, Hacker's Delight, p. 152. |
| 650 | unsigned s = clz(divisor); |
| 651 | // If {s} is digitBits here, it causes an undefined behavior. |
| 652 | // But {s} is never digitBits since {divisor} is never zero here. |
| 653 | ASSERT(s != digitBits); |
| 654 | divisor <<= s; |
| 655 | |
| 656 | Digit vn1 = divisor >> halfDigitBits; |
| 657 | Digit vn0 = divisor & halfDigitMask; |
| 658 | |
| 659 | // {sZeroMask} which is 0 if s == 0 and all 1-bits otherwise. |
| 660 | // {s} can be 0. If {s} is 0, performing "low >> (digitBits - s)" must not be done since it causes an undefined behavior |
| 661 | // since `>> digitBits` is undefied in C++. Quoted from C++ spec, "The type of the result is that of the promoted left operand. |
| 662 | // The behavior is undefined if the right operand is negative, or greater than or equal to the length in bits of the promoted |
| 663 | // left operand". We mask the right operand of the shift by {shiftMask} (`digitBits - 1`), which makes `digitBits - 0` zero. |
| 664 | // This shifting produces a value which covers 0 < {s} <= (digitBits - 1) cases. {s} == digitBits never happen as we asserted. |
| 665 | // Since {sZeroMask} clears the value in the case of {s} == 0, {s} == 0 case is also covered. |
| 666 | STATIC_ASSERT(sizeof(CPURegister) == sizeof(Digit)); |
| 667 | Digit sZeroMask = static_cast<Digit>((-static_cast<CPURegister>(s)) >> (digitBits - 1)); |
| 668 | static constexpr unsigned shiftMask = digitBits - 1; |
| 669 | Digit un32 = (high << s) | ((low >> ((digitBits - s) & shiftMask)) & sZeroMask); |
| 670 | |
| 671 | Digit un10 = low << s; |
| 672 | Digit un1 = un10 >> halfDigitBits; |
| 673 | Digit un0 = un10 & halfDigitMask; |
| 674 | Digit q1 = un32 / vn1; |
| 675 | Digit rhat = un32 - q1 * vn1; |
| 676 | |
| 677 | while (q1 >= halfDigitBase || q1 * vn0 > rhat * halfDigitBase + un1) { |
| 678 | q1--; |
| 679 | rhat += vn1; |
| 680 | if (rhat >= halfDigitBase) |
| 681 | break; |
| 682 | } |
| 683 | |
| 684 | Digit un21 = un32 * halfDigitBase + un1 - q1 * divisor; |
| 685 | Digit q0 = un21 / vn1; |
| 686 | rhat = un21 - q0 * vn1; |
| 687 | |
| 688 | while (q0 >= halfDigitBase || q0 * vn0 > rhat * halfDigitBase + un0) { |
| 689 | q0--; |
| 690 | rhat += vn1; |
| 691 | if (rhat >= halfDigitBase) |
| 692 | break; |
| 693 | } |
| 694 | |
| 695 | remainder = (un21 * halfDigitBase + un0 - q0 * divisor) >> s; |
| 696 | return q1 * halfDigitBase + q0; |
| 697 | #endif |
| 698 | } |
| 699 | |
| 700 | // Multiplies {source} with {factor} and adds {summand} to the result. |
| 701 | // {result} and {source} may be the same BigInt for inplace modification. |
| 702 | void JSBigInt::internalMultiplyAdd(JSBigInt* source, Digit factor, Digit summand, unsigned n, JSBigInt* result) |
| 703 | { |
| 704 | ASSERT(source->length() >= n); |
| 705 | ASSERT(result->length() >= n); |
| 706 | |
| 707 | Digit carry = summand; |
| 708 | Digit high = 0; |
| 709 | for (unsigned i = 0; i < n; i++) { |
| 710 | Digit current = source->digit(i); |
| 711 | Digit newCarry = 0; |
| 712 | |
| 713 | // Compute this round's multiplication. |
| 714 | Digit newHigh = 0; |
| 715 | current = digitMul(current, factor, newHigh); |
| 716 | |
| 717 | // Add last round's carryovers. |
| 718 | current = digitAdd(current, high, newCarry); |
| 719 | current = digitAdd(current, carry, newCarry); |
| 720 | |
| 721 | // Store result and prepare for next round. |
| 722 | result->setDigit(i, current); |
| 723 | carry = newCarry; |
| 724 | high = newHigh; |
| 725 | } |
| 726 | |
| 727 | if (result->length() > n) { |
| 728 | result->setDigit(n++, carry + high); |
| 729 | |
| 730 | // Current callers don't pass in such large results, but let's be robust. |
| 731 | while (n < result->length()) |
| 732 | result->setDigit(n++, 0); |
| 733 | } else |
| 734 | ASSERT(!(carry + high)); |
| 735 | } |
| 736 | |
| 737 | // Multiplies {multiplicand} with {multiplier} and adds the result to |
| 738 | // {accumulator}, starting at {accumulatorIndex} for the least-significant |
| 739 | // digit. |
| 740 | // Callers must ensure that {accumulator} is big enough to hold the result. |
| 741 | void JSBigInt::multiplyAccumulate(JSBigInt* multiplicand, Digit multiplier, JSBigInt* accumulator, unsigned accumulatorIndex) |
| 742 | { |
| 743 | ASSERT(accumulator->length() > multiplicand->length() + accumulatorIndex); |
| 744 | if (!multiplier) |
| 745 | return; |
| 746 | |
| 747 | Digit carry = 0; |
| 748 | Digit high = 0; |
| 749 | for (unsigned i = 0; i < multiplicand->length(); i++, accumulatorIndex++) { |
| 750 | Digit acc = accumulator->digit(accumulatorIndex); |
| 751 | Digit newCarry = 0; |
| 752 | |
| 753 | // Add last round's carryovers. |
| 754 | acc = digitAdd(acc, high, newCarry); |
| 755 | acc = digitAdd(acc, carry, newCarry); |
| 756 | |
| 757 | // Compute this round's multiplication. |
| 758 | Digit multiplicandDigit = multiplicand->digit(i); |
| 759 | Digit low = digitMul(multiplier, multiplicandDigit, high); |
| 760 | acc = digitAdd(acc, low, newCarry); |
| 761 | |
| 762 | // Store result and prepare for next round. |
| 763 | accumulator->setDigit(accumulatorIndex, acc); |
| 764 | carry = newCarry; |
| 765 | } |
| 766 | |
| 767 | while (carry || high) { |
| 768 | ASSERT(accumulatorIndex < accumulator->length()); |
| 769 | Digit acc = accumulator->digit(accumulatorIndex); |
| 770 | Digit newCarry = 0; |
| 771 | acc = digitAdd(acc, high, newCarry); |
| 772 | high = 0; |
| 773 | acc = digitAdd(acc, carry, newCarry); |
| 774 | accumulator->setDigit(accumulatorIndex, acc); |
| 775 | carry = newCarry; |
| 776 | accumulatorIndex++; |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | bool JSBigInt::equals(JSBigInt* x, JSBigInt* y) |
| 781 | { |
| 782 | if (x->sign() != y->sign()) |
| 783 | return false; |
| 784 | |
| 785 | if (x->length() != y->length()) |
| 786 | return false; |
| 787 | |
| 788 | for (unsigned i = 0; i < x->length(); i++) { |
| 789 | if (x->digit(i) != y->digit(i)) |
| 790 | return false; |
| 791 | } |
| 792 | |
| 793 | return true; |
| 794 | } |
| 795 | |
| 796 | JSBigInt::ComparisonResult JSBigInt::compare(JSBigInt* x, JSBigInt* y) |
| 797 | { |
| 798 | bool xSign = x->sign(); |
| 799 | |
| 800 | if (xSign != y->sign()) |
| 801 | return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| 802 | |
| 803 | ComparisonResult result = absoluteCompare(x, y); |
| 804 | if (result == ComparisonResult::GreaterThan) |
| 805 | return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| 806 | if (result == ComparisonResult::LessThan) |
| 807 | return xSign ? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| 808 | |
| 809 | return ComparisonResult::Equal; |
| 810 | } |
| 811 | |
| 812 | inline JSBigInt::ComparisonResult JSBigInt::absoluteCompare(JSBigInt* x, JSBigInt* y) |
| 813 | { |
| 814 | ASSERT(!x->length() || x->digit(x->length() - 1)); |
| 815 | ASSERT(!y->length() || y->digit(y->length() - 1)); |
| 816 | |
| 817 | int diff = x->length() - y->length(); |
| 818 | if (diff) |
| 819 | return diff < 0 ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| 820 | |
| 821 | int i = x->length() - 1; |
| 822 | while (i >= 0 && x->digit(i) == y->digit(i)) |
| 823 | i--; |
| 824 | |
| 825 | if (i < 0) |
| 826 | return ComparisonResult::Equal; |
| 827 | |
| 828 | return x->digit(i) > y->digit(i) ? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| 829 | } |
| 830 | |
| 831 | JSBigInt* JSBigInt::absoluteAdd(ExecState* exec, JSBigInt* x, JSBigInt* y, bool resultSign) |
| 832 | { |
| 833 | VM& vm = exec->vm(); |
| 834 | |
| 835 | if (x->length() < y->length()) |
| 836 | return absoluteAdd(exec, y, x, resultSign); |
| 837 | |
| 838 | if (x->isZero()) { |
| 839 | ASSERT(y->isZero()); |
| 840 | return x; |
| 841 | } |
| 842 | |
| 843 | if (y->isZero()) |
| 844 | return resultSign == x->sign() ? x : unaryMinus(vm, x); |
| 845 | |
| 846 | JSBigInt* result = JSBigInt::tryCreateWithLength(exec, x->length() + 1); |
| 847 | if (!result) |
| 848 | return nullptr; |
| 849 | Digit carry = 0; |
| 850 | unsigned i = 0; |
| 851 | for (; i < y->length(); i++) { |
| 852 | Digit newCarry = 0; |
| 853 | Digit sum = digitAdd(x->digit(i), y->digit(i), newCarry); |
| 854 | sum = digitAdd(sum, carry, newCarry); |
| 855 | result->setDigit(i, sum); |
| 856 | carry = newCarry; |
| 857 | } |
| 858 | |
| 859 | for (; i < x->length(); i++) { |
| 860 | Digit newCarry = 0; |
| 861 | Digit sum = digitAdd(x->digit(i), carry, newCarry); |
| 862 | result->setDigit(i, sum); |
| 863 | carry = newCarry; |
| 864 | } |
| 865 | |
| 866 | result->setDigit(i, carry); |
| 867 | result->setSign(resultSign); |
| 868 | |
| 869 | return result->rightTrim(vm); |
| 870 | } |
| 871 | |
| 872 | JSBigInt* JSBigInt::absoluteSub(VM& vm, JSBigInt* x, JSBigInt* y, bool resultSign) |
| 873 | { |
| 874 | ComparisonResult comparisonResult = absoluteCompare(x, y); |
| 875 | ASSERT(x->length() >= y->length()); |
| 876 | ASSERT(comparisonResult == ComparisonResult::GreaterThan || comparisonResult == ComparisonResult::Equal); |
| 877 | |
| 878 | if (x->isZero()) { |
| 879 | ASSERT(y->isZero()); |
| 880 | return x; |
| 881 | } |
| 882 | |
| 883 | if (y->isZero()) |
| 884 | return resultSign == x->sign() ? x : unaryMinus(vm, x); |
| 885 | |
| 886 | if (comparisonResult == ComparisonResult::Equal) |
| 887 | return JSBigInt::createZero(vm); |
| 888 | |
| 889 | JSBigInt* result = JSBigInt::createWithLengthUnchecked(vm, x->length()); |
| 890 | |
| 891 | Digit borrow = 0; |
| 892 | unsigned i = 0; |
| 893 | for (; i < y->length(); i++) { |
| 894 | Digit newBorrow = 0; |
| 895 | Digit difference = digitSub(x->digit(i), y->digit(i), newBorrow); |
| 896 | difference = digitSub(difference, borrow, newBorrow); |
| 897 | result->setDigit(i, difference); |
| 898 | borrow = newBorrow; |
| 899 | } |
| 900 | |
| 901 | for (; i < x->length(); i++) { |
| 902 | Digit newBorrow = 0; |
| 903 | Digit difference = digitSub(x->digit(i), borrow, newBorrow); |
| 904 | result->setDigit(i, difference); |
| 905 | borrow = newBorrow; |
| 906 | } |
| 907 | |
| 908 | ASSERT(!borrow); |
| 909 | result->setSign(resultSign); |
| 910 | return result->rightTrim(vm); |
| 911 | } |
| 912 | |
| 913 | // Divides {x} by {divisor}, returning the result in {quotient} and {remainder}. |
| 914 | // Mathematically, the contract is: |
| 915 | // quotient = (x - remainder) / divisor, with 0 <= remainder < divisor. |
| 916 | // If {quotient} is an empty handle, an appropriately sized BigInt will be |
| 917 | // allocated for it; otherwise the caller must ensure that it is big enough. |
| 918 | // {quotient} can be the same as {x} for an in-place division. {quotient} can |
| 919 | // also be nullptr if the caller is only interested in the remainder. |
| 920 | void JSBigInt::absoluteDivWithDigitDivisor(VM& vm, JSBigInt* x, Digit divisor, JSBigInt** quotient, Digit& remainder) |
| 921 | { |
| 922 | ASSERT(divisor); |
| 923 | |
| 924 | ASSERT(!x->isZero()); |
| 925 | remainder = 0; |
| 926 | if (divisor == 1) { |
| 927 | if (quotient != nullptr) |
| 928 | *quotient = x; |
| 929 | return; |
| 930 | } |
| 931 | |
| 932 | unsigned length = x->length(); |
| 933 | if (quotient != nullptr) { |
| 934 | if (*quotient == nullptr) |
| 935 | *quotient = JSBigInt::createWithLengthUnchecked(vm, length); |
| 936 | |
| 937 | for (int i = length - 1; i >= 0; i--) { |
| 938 | Digit q = digitDiv(remainder, x->digit(i), divisor, remainder); |
| 939 | (*quotient)->setDigit(i, q); |
| 940 | } |
| 941 | } else { |
| 942 | for (int i = length - 1; i >= 0; i--) |
| 943 | digitDiv(remainder, x->digit(i), divisor, remainder); |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | // Divides {dividend} by {divisor}, returning the result in {quotient} and |
| 948 | // {remainder}. Mathematically, the contract is: |
| 949 | // quotient = (dividend - remainder) / divisor, with 0 <= remainder < divisor. |
| 950 | // Both {quotient} and {remainder} are optional, for callers that are only |
| 951 | // interested in one of them. |
| 952 | // See Knuth, Volume 2, section 4.3.1, Algorithm D. |
| 953 | void JSBigInt::absoluteDivWithBigIntDivisor(ExecState* exec, JSBigInt* dividend, JSBigInt* divisor, JSBigInt** quotient, JSBigInt** remainder) |
| 954 | { |
| 955 | ASSERT(divisor->length() >= 2); |
| 956 | ASSERT(dividend->length() >= divisor->length()); |
| 957 | VM& vm = exec->vm(); |
| 958 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 959 | |
| 960 | // The unusual variable names inside this function are consistent with |
| 961 | // Knuth's book, as well as with Go's implementation of this algorithm. |
| 962 | // Maintaining this consistency is probably more useful than trying to |
| 963 | // come up with more descriptive names for them. |
| 964 | unsigned n = divisor->length(); |
| 965 | unsigned m = dividend->length() - n; |
| 966 | |
| 967 | // The quotient to be computed. |
| 968 | JSBigInt* q = nullptr; |
| 969 | if (quotient != nullptr) |
| 970 | q = createWithLengthUnchecked(exec->vm(), m + 1); |
| 971 | |
| 972 | // In each iteration, {qhatv} holds {divisor} * {current quotient digit}. |
| 973 | // "v" is the book's name for {divisor}, "qhat" the current quotient digit. |
| 974 | JSBigInt* qhatv = tryCreateWithLength(exec, n + 1); |
| 975 | RETURN_IF_EXCEPTION(scope, void()); |
| 976 | |
| 977 | // D1. |
| 978 | // Left-shift inputs so that the divisor's MSB is set. This is necessary |
| 979 | // to prevent the digit-wise divisions (see digit_div call below) from |
| 980 | // overflowing (they take a two digits wide input, and return a one digit |
| 981 | // result). |
| 982 | Digit lastDigit = divisor->digit(n - 1); |
| 983 | unsigned shift = clz(lastDigit); |
| 984 | |
| 985 | if (shift > 0) { |
| 986 | divisor = absoluteLeftShiftAlwaysCopy(exec, divisor, shift, LeftShiftMode::SameSizeResult); |
| 987 | RETURN_IF_EXCEPTION(scope, void()); |
| 988 | } |
| 989 | |
| 990 | // Holds the (continuously updated) remaining part of the dividend, which |
| 991 | // eventually becomes the remainder. |
| 992 | JSBigInt* u = absoluteLeftShiftAlwaysCopy(exec, dividend, shift, LeftShiftMode::AlwaysAddOneDigit); |
| 993 | RETURN_IF_EXCEPTION(scope, void()); |
| 994 | |
| 995 | // D2. |
| 996 | // Iterate over the dividend's digit (like the "grad school" algorithm). |
| 997 | // {vn1} is the divisor's most significant digit. |
| 998 | Digit vn1 = divisor->digit(n - 1); |
| 999 | for (int j = m; j >= 0; j--) { |
| 1000 | // D3. |
| 1001 | // Estimate the current iteration's quotient digit (see Knuth for details). |
| 1002 | // {qhat} is the current quotient digit. |
| 1003 | Digit qhat = std::numeric_limits<Digit>::max(); |
| 1004 | |
| 1005 | // {ujn} is the dividend's most significant remaining digit. |
| 1006 | Digit ujn = u->digit(j + n); |
| 1007 | if (ujn != vn1) { |
| 1008 | // {rhat} is the current iteration's remainder. |
| 1009 | Digit rhat = 0; |
| 1010 | // Estimate the current quotient digit by dividing the most significant |
| 1011 | // digits of dividend and divisor. The result will not be too small, |
| 1012 | // but could be a bit too large. |
| 1013 | qhat = digitDiv(ujn, u->digit(j + n - 1), vn1, rhat); |
| 1014 | |
| 1015 | // Decrement the quotient estimate as needed by looking at the next |
| 1016 | // digit, i.e. by testing whether |
| 1017 | // qhat * v_{n-2} > (rhat << digitBits) + u_{j+n-2}. |
| 1018 | Digit vn2 = divisor->digit(n - 2); |
| 1019 | Digit ujn2 = u->digit(j + n - 2); |
| 1020 | while (productGreaterThan(qhat, vn2, rhat, ujn2)) { |
| 1021 | qhat--; |
| 1022 | Digit prevRhat = rhat; |
| 1023 | rhat += vn1; |
| 1024 | // v[n-1] >= 0, so this tests for overflow. |
| 1025 | if (rhat < prevRhat) |
| 1026 | break; |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | // D4. |
| 1031 | // Multiply the divisor with the current quotient digit, and subtract |
| 1032 | // it from the dividend. If there was "borrow", then the quotient digit |
| 1033 | // was one too high, so we must correct it and undo one subtraction of |
| 1034 | // the (shifted) divisor. |
| 1035 | internalMultiplyAdd(divisor, qhat, 0, n, qhatv); |
| 1036 | Digit c = u->absoluteInplaceSub(qhatv, j); |
| 1037 | if (c) { |
| 1038 | c = u->absoluteInplaceAdd(divisor, j); |
| 1039 | u->setDigit(j + n, u->digit(j + n) + c); |
| 1040 | qhat--; |
| 1041 | } |
| 1042 | |
| 1043 | if (quotient != nullptr) |
| 1044 | q->setDigit(j, qhat); |
| 1045 | } |
| 1046 | |
| 1047 | if (quotient != nullptr) { |
| 1048 | // Caller will right-trim. |
| 1049 | *quotient = q; |
| 1050 | } |
| 1051 | |
| 1052 | if (remainder != nullptr) { |
| 1053 | u->inplaceRightShift(shift); |
| 1054 | *remainder = u; |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | // Returns whether (factor1 * factor2) > (high << kDigitBits) + low. |
| 1059 | inline bool JSBigInt::productGreaterThan(Digit factor1, Digit factor2, Digit high, Digit low) |
| 1060 | { |
| 1061 | Digit resultHigh; |
| 1062 | Digit resultLow = digitMul(factor1, factor2, resultHigh); |
| 1063 | return resultHigh > high || (resultHigh == high && resultLow > low); |
| 1064 | } |
| 1065 | |
| 1066 | // Adds {summand} onto {this}, starting with {summand}'s 0th digit |
| 1067 | // at {this}'s {startIndex}'th digit. Returns the "carry" (0 or 1). |
| 1068 | JSBigInt::Digit JSBigInt::absoluteInplaceAdd(JSBigInt* summand, unsigned startIndex) |
| 1069 | { |
| 1070 | Digit carry = 0; |
| 1071 | unsigned n = summand->length(); |
| 1072 | ASSERT(length() >= startIndex + n); |
| 1073 | for (unsigned i = 0; i < n; i++) { |
| 1074 | Digit newCarry = 0; |
| 1075 | Digit sum = digitAdd(digit(startIndex + i), summand->digit(i), newCarry); |
| 1076 | sum = digitAdd(sum, carry, newCarry); |
| 1077 | setDigit(startIndex + i, sum); |
| 1078 | carry = newCarry; |
| 1079 | } |
| 1080 | |
| 1081 | return carry; |
| 1082 | } |
| 1083 | |
| 1084 | // Subtracts {subtrahend} from {this}, starting with {subtrahend}'s 0th digit |
| 1085 | // at {this}'s {startIndex}-th digit. Returns the "borrow" (0 or 1). |
| 1086 | JSBigInt::Digit JSBigInt::absoluteInplaceSub(JSBigInt* subtrahend, unsigned startIndex) |
| 1087 | { |
| 1088 | Digit borrow = 0; |
| 1089 | unsigned n = subtrahend->length(); |
| 1090 | ASSERT(length() >= startIndex + n); |
| 1091 | for (unsigned i = 0; i < n; i++) { |
| 1092 | Digit newBorrow = 0; |
| 1093 | Digit difference = digitSub(digit(startIndex + i), subtrahend->digit(i), newBorrow); |
| 1094 | difference = digitSub(difference, borrow, newBorrow); |
| 1095 | setDigit(startIndex + i, difference); |
| 1096 | borrow = newBorrow; |
| 1097 | } |
| 1098 | |
| 1099 | return borrow; |
| 1100 | } |
| 1101 | |
| 1102 | void JSBigInt::inplaceRightShift(unsigned shift) |
| 1103 | { |
| 1104 | ASSERT(shift < digitBits); |
| 1105 | ASSERT(!(digit(0) & ((static_cast<Digit>(1) << shift) - 1))); |
| 1106 | |
| 1107 | if (!shift) |
| 1108 | return; |
| 1109 | |
| 1110 | Digit carry = digit(0) >> shift; |
| 1111 | unsigned last = length() - 1; |
| 1112 | for (unsigned i = 0; i < last; i++) { |
| 1113 | Digit d = digit(i + 1); |
| 1114 | setDigit(i, (d << (digitBits - shift)) | carry); |
| 1115 | carry = d >> shift; |
| 1116 | } |
| 1117 | setDigit(last, carry); |
| 1118 | } |
| 1119 | |
| 1120 | // Always copies the input, even when {shift} == 0. |
| 1121 | JSBigInt* JSBigInt::absoluteLeftShiftAlwaysCopy(ExecState* exec, JSBigInt* x, unsigned shift, LeftShiftMode mode) |
| 1122 | { |
| 1123 | ASSERT(shift < digitBits); |
| 1124 | ASSERT(!x->isZero()); |
| 1125 | |
| 1126 | unsigned n = x->length(); |
| 1127 | unsigned resultLength = mode == LeftShiftMode::AlwaysAddOneDigit ? n + 1 : n; |
| 1128 | JSBigInt* result = tryCreateWithLength(exec, resultLength); |
| 1129 | if (!result) |
| 1130 | return nullptr; |
| 1131 | |
| 1132 | if (!shift) { |
| 1133 | for (unsigned i = 0; i < n; i++) |
| 1134 | result->setDigit(i, x->digit(i)); |
| 1135 | if (mode == LeftShiftMode::AlwaysAddOneDigit) |
| 1136 | result->setDigit(n, 0); |
| 1137 | |
| 1138 | return result; |
| 1139 | } |
| 1140 | |
| 1141 | Digit carry = 0; |
| 1142 | for (unsigned i = 0; i < n; i++) { |
| 1143 | Digit d = x->digit(i); |
| 1144 | result->setDigit(i, (d << shift) | carry); |
| 1145 | carry = d >> (digitBits - shift); |
| 1146 | } |
| 1147 | |
| 1148 | if (mode == LeftShiftMode::AlwaysAddOneDigit) |
| 1149 | result->setDigit(n, carry); |
| 1150 | else { |
| 1151 | ASSERT(mode == LeftShiftMode::SameSizeResult); |
| 1152 | ASSERT(!carry); |
| 1153 | } |
| 1154 | |
| 1155 | return result; |
| 1156 | } |
| 1157 | |
| 1158 | // Helper for Absolute{And,AndNot,Or,Xor}. |
| 1159 | // Performs the given binary {op} on digit pairs of {x} and {y}; when the |
| 1160 | // end of the shorter of the two is reached, {extraDigits} configures how |
| 1161 | // remaining digits in the longer input (if {symmetric} == Symmetric, in |
| 1162 | // {x} otherwise) are handled: copied to the result or ignored. |
| 1163 | // Example: |
| 1164 | // y: [ y2 ][ y1 ][ y0 ] |
| 1165 | // x: [ x3 ][ x2 ][ x1 ][ x0 ] |
| 1166 | // | | | | |
| 1167 | // (Copy) (op) (op) (op) |
| 1168 | // | | | | |
| 1169 | // v v v v |
| 1170 | // result: [ 0 ][ x3 ][ r2 ][ r1 ][ r0 ] |
| 1171 | template<typename BitwiseOp> |
| 1172 | inline JSBigInt* JSBigInt::absoluteBitwiseOp(VM& vm, JSBigInt* x, JSBigInt* y, ExtraDigitsHandling , SymmetricOp symmetric, BitwiseOp&& op) |
| 1173 | { |
| 1174 | unsigned xLength = x->length(); |
| 1175 | unsigned yLength = y->length(); |
| 1176 | unsigned numPairs = yLength; |
| 1177 | if (xLength < yLength) { |
| 1178 | numPairs = xLength; |
| 1179 | if (symmetric == SymmetricOp::Symmetric) { |
| 1180 | std::swap(x, y); |
| 1181 | std::swap(xLength, yLength); |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | ASSERT(numPairs == std::min(xLength, yLength)); |
| 1186 | unsigned resultLength = extraDigits == ExtraDigitsHandling::Copy ? xLength : numPairs; |
| 1187 | JSBigInt* result = createWithLengthUnchecked(vm, resultLength); |
| 1188 | unsigned i = 0; |
| 1189 | for (; i < numPairs; i++) |
| 1190 | result->setDigit(i, op(x->digit(i), y->digit(i))); |
| 1191 | |
| 1192 | if (extraDigits == ExtraDigitsHandling::Copy) { |
| 1193 | for (; i < xLength; i++) |
| 1194 | result->setDigit(i, x->digit(i)); |
| 1195 | } |
| 1196 | |
| 1197 | for (; i < resultLength; i++) |
| 1198 | result->setDigit(i, 0); |
| 1199 | |
| 1200 | return result->rightTrim(vm); |
| 1201 | } |
| 1202 | |
| 1203 | JSBigInt* JSBigInt::absoluteAnd(VM& vm, JSBigInt* x, JSBigInt* y) |
| 1204 | { |
| 1205 | auto digitOperation = [](Digit a, Digit b) { |
| 1206 | return a & b; |
| 1207 | }; |
| 1208 | return absoluteBitwiseOp(vm, x, y, ExtraDigitsHandling::Skip, SymmetricOp::Symmetric, digitOperation); |
| 1209 | } |
| 1210 | |
| 1211 | JSBigInt* JSBigInt::absoluteOr(VM& vm, JSBigInt* x, JSBigInt* y) |
| 1212 | { |
| 1213 | auto digitOperation = [](Digit a, Digit b) { |
| 1214 | return a | b; |
| 1215 | }; |
| 1216 | return absoluteBitwiseOp(vm, x, y, ExtraDigitsHandling::Copy, SymmetricOp::Symmetric, digitOperation); |
| 1217 | } |
| 1218 | |
| 1219 | JSBigInt* JSBigInt::absoluteAndNot(VM& vm, JSBigInt* x, JSBigInt* y) |
| 1220 | { |
| 1221 | auto digitOperation = [](Digit a, Digit b) { |
| 1222 | return a & ~b; |
| 1223 | }; |
| 1224 | return absoluteBitwiseOp(vm, x, y, ExtraDigitsHandling::Copy, SymmetricOp::NotSymmetric, digitOperation); |
| 1225 | } |
| 1226 | |
| 1227 | JSBigInt* JSBigInt::absoluteXor(VM& vm, JSBigInt* x, JSBigInt* y) |
| 1228 | { |
| 1229 | auto digitOperation = [](Digit a, Digit b) { |
| 1230 | return a ^ b; |
| 1231 | }; |
| 1232 | return absoluteBitwiseOp(vm, x, y, ExtraDigitsHandling::Copy, SymmetricOp::Symmetric, digitOperation); |
| 1233 | } |
| 1234 | |
| 1235 | JSBigInt* JSBigInt::absoluteAddOne(ExecState* exec, JSBigInt* x, SignOption signOption) |
| 1236 | { |
| 1237 | unsigned inputLength = x->length(); |
| 1238 | // The addition will overflow into a new digit if all existing digits are |
| 1239 | // at maximum. |
| 1240 | bool willOverflow = true; |
| 1241 | for (unsigned i = 0; i < inputLength; i++) { |
| 1242 | if (std::numeric_limits<Digit>::max() != x->digit(i)) { |
| 1243 | willOverflow = false; |
| 1244 | break; |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | unsigned resultLength = inputLength + willOverflow; |
| 1249 | JSBigInt* result = tryCreateWithLength(exec, resultLength); |
| 1250 | if (!result) |
| 1251 | return nullptr; |
| 1252 | |
| 1253 | Digit carry = 1; |
| 1254 | for (unsigned i = 0; i < inputLength; i++) { |
| 1255 | Digit newCarry = 0; |
| 1256 | result->setDigit(i, digitAdd(x->digit(i), carry, newCarry)); |
| 1257 | carry = newCarry; |
| 1258 | } |
| 1259 | if (resultLength > inputLength) |
| 1260 | result->setDigit(inputLength, carry); |
| 1261 | else |
| 1262 | ASSERT(!carry); |
| 1263 | |
| 1264 | result->setSign(signOption == SignOption::Signed); |
| 1265 | return result->rightTrim(exec->vm()); |
| 1266 | } |
| 1267 | |
| 1268 | JSBigInt* JSBigInt::absoluteSubOne(ExecState* exec, JSBigInt* x, unsigned resultLength) |
| 1269 | { |
| 1270 | ASSERT(!x->isZero()); |
| 1271 | ASSERT(resultLength >= x->length()); |
| 1272 | VM& vm = exec->vm(); |
| 1273 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 1274 | |
| 1275 | JSBigInt* result = tryCreateWithLength(exec, resultLength); |
| 1276 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 1277 | |
| 1278 | unsigned length = x->length(); |
| 1279 | Digit borrow = 1; |
| 1280 | for (unsigned i = 0; i < length; i++) { |
| 1281 | Digit newBorrow = 0; |
| 1282 | result->setDigit(i, digitSub(x->digit(i), borrow, newBorrow)); |
| 1283 | borrow = newBorrow; |
| 1284 | } |
| 1285 | ASSERT(!borrow); |
| 1286 | for (unsigned i = length; i < resultLength; i++) |
| 1287 | result->setDigit(i, borrow); |
| 1288 | |
| 1289 | return result->rightTrim(vm); |
| 1290 | } |
| 1291 | |
| 1292 | JSBigInt* JSBigInt::leftShiftByAbsolute(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 1293 | { |
| 1294 | VM& vm = exec->vm(); |
| 1295 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 1296 | |
| 1297 | auto optionalShift = toShiftAmount(y); |
| 1298 | if (!optionalShift) { |
| 1299 | throwRangeError(exec, scope, "BigInt generated from this operation is too big"_s ); |
| 1300 | return nullptr; |
| 1301 | } |
| 1302 | |
| 1303 | Digit shift = *optionalShift; |
| 1304 | unsigned digitShift = static_cast<unsigned>(shift / digitBits); |
| 1305 | unsigned bitsShift = static_cast<unsigned>(shift % digitBits); |
| 1306 | unsigned length = x->length(); |
| 1307 | bool grow = bitsShift && (x->digit(length - 1) >> (digitBits - bitsShift)); |
| 1308 | int resultLength = length + digitShift + grow; |
| 1309 | if (static_cast<unsigned>(resultLength) > maxLength) { |
| 1310 | throwRangeError(exec, scope, "BigInt generated from this operation is too big"_s ); |
| 1311 | return nullptr; |
| 1312 | } |
| 1313 | |
| 1314 | JSBigInt* result = tryCreateWithLength(exec, resultLength); |
| 1315 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 1316 | if (!bitsShift) { |
| 1317 | unsigned i = 0; |
| 1318 | for (; i < digitShift; i++) |
| 1319 | result->setDigit(i, 0ul); |
| 1320 | |
| 1321 | for (; i < static_cast<unsigned>(resultLength); i++) |
| 1322 | result->setDigit(i, x->digit(i - digitShift)); |
| 1323 | } else { |
| 1324 | Digit carry = 0; |
| 1325 | for (unsigned i = 0; i < digitShift; i++) |
| 1326 | result->setDigit(i, 0ul); |
| 1327 | |
| 1328 | for (unsigned i = 0; i < length; i++) { |
| 1329 | Digit d = x->digit(i); |
| 1330 | result->setDigit(i + digitShift, (d << bitsShift) | carry); |
| 1331 | carry = d >> (digitBits - bitsShift); |
| 1332 | } |
| 1333 | |
| 1334 | if (grow) |
| 1335 | result->setDigit(length + digitShift, carry); |
| 1336 | else |
| 1337 | ASSERT(!carry); |
| 1338 | } |
| 1339 | |
| 1340 | result->setSign(x->sign()); |
| 1341 | return result->rightTrim(vm); |
| 1342 | } |
| 1343 | |
| 1344 | JSBigInt* JSBigInt::rightShiftByAbsolute(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| 1345 | { |
| 1346 | VM& vm = exec->vm(); |
| 1347 | unsigned length = x->length(); |
| 1348 | bool sign = x->sign(); |
| 1349 | auto optionalShift = toShiftAmount(y); |
| 1350 | if (!optionalShift) |
| 1351 | return rightShiftByMaximum(vm, sign); |
| 1352 | |
| 1353 | Digit shift = *optionalShift; |
| 1354 | unsigned digitalShift = static_cast<unsigned>(shift / digitBits); |
| 1355 | unsigned bitsShift = static_cast<unsigned>(shift % digitBits); |
| 1356 | int resultLength = length - digitalShift; |
| 1357 | if (resultLength <= 0) |
| 1358 | return rightShiftByMaximum(vm, sign); |
| 1359 | |
| 1360 | // For negative numbers, round down if any bit was shifted out (so that e.g. |
| 1361 | // -5n >> 1n == -3n and not -2n). Check now whether this will happen and |
| 1362 | // whether it can cause overflow into a new digit. If we allocate the result |
| 1363 | // large enough up front, it avoids having to do a second allocation later. |
| 1364 | bool mustRoundDown = false; |
| 1365 | if (sign) { |
| 1366 | const Digit mask = (static_cast<Digit>(1) << bitsShift) - 1; |
| 1367 | if (x->digit(digitalShift) & mask) |
| 1368 | mustRoundDown = true; |
| 1369 | else { |
| 1370 | for (unsigned i = 0; i < digitalShift; i++) { |
| 1371 | if (x->digit(i)) { |
| 1372 | mustRoundDown = true; |
| 1373 | break; |
| 1374 | } |
| 1375 | } |
| 1376 | } |
| 1377 | } |
| 1378 | |
| 1379 | // If bitsShift is non-zero, it frees up bits, preventing overflow. |
| 1380 | if (mustRoundDown && !bitsShift) { |
| 1381 | // Overflow cannot happen if the most significant digit has unset bits. |
| 1382 | Digit msd = x->digit(length - 1); |
| 1383 | bool roundingCanOverflow = !static_cast<Digit>(~msd); |
| 1384 | if (roundingCanOverflow) |
| 1385 | resultLength++; |
| 1386 | } |
| 1387 | |
| 1388 | ASSERT(static_cast<unsigned>(resultLength) <= length); |
| 1389 | JSBigInt* result = createWithLengthUnchecked(vm, static_cast<unsigned>(resultLength)); |
| 1390 | if (!bitsShift) { |
| 1391 | for (unsigned i = digitalShift; i < length; i++) |
| 1392 | result->setDigit(i - digitalShift, x->digit(i)); |
| 1393 | } else { |
| 1394 | Digit carry = x->digit(digitalShift) >> bitsShift; |
| 1395 | unsigned last = length - digitalShift - 1; |
| 1396 | for (unsigned i = 0; i < last; i++) { |
| 1397 | Digit d = x->digit(i + digitalShift + 1); |
| 1398 | result->setDigit(i, (d << (digitBits - bitsShift)) | carry); |
| 1399 | carry = d >> bitsShift; |
| 1400 | } |
| 1401 | result->setDigit(last, carry); |
| 1402 | } |
| 1403 | |
| 1404 | if (sign) { |
| 1405 | result->setSign(true); |
| 1406 | if (mustRoundDown) { |
| 1407 | // Since the result is negative, rounding down means adding one to |
| 1408 | // its absolute value. This cannot overflow. |
| 1409 | result = result->rightTrim(vm); |
| 1410 | return absoluteAddOne(exec, result, SignOption::Signed); |
| 1411 | } |
| 1412 | } |
| 1413 | |
| 1414 | return result->rightTrim(vm); |
| 1415 | } |
| 1416 | |
| 1417 | JSBigInt* JSBigInt::rightShiftByMaximum(VM& vm, bool sign) |
| 1418 | { |
| 1419 | if (sign) |
| 1420 | return createFrom(vm, -1); |
| 1421 | |
| 1422 | return createZero(vm); |
| 1423 | } |
| 1424 | |
| 1425 | // Lookup table for the maximum number of bits required per character of a |
| 1426 | // base-N string representation of a number. To increase accuracy, the array |
| 1427 | // value is the actual value multiplied by 32. To generate this table: |
| 1428 | // for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); } |
| 1429 | constexpr uint8_t maxBitsPerCharTable[] = { |
| 1430 | 0, 0, 32, 51, 64, 75, 83, 90, 96, // 0..8 |
| 1431 | 102, 107, 111, 115, 119, 122, 126, 128, // 9..16 |
| 1432 | 131, 134, 136, 139, 141, 143, 145, 147, // 17..24 |
| 1433 | 149, 151, 153, 154, 156, 158, 159, 160, // 25..32 |
| 1434 | 162, 163, 165, 166, // 33..36 |
| 1435 | }; |
| 1436 | |
| 1437 | static constexpr unsigned bitsPerCharTableShift = 5; |
| 1438 | static constexpr size_t bitsPerCharTableMultiplier = 1u << bitsPerCharTableShift; |
| 1439 | |
| 1440 | // Compute (an overapproximation of) the length of the resulting string: |
| 1441 | // Divide bit length of the BigInt by bits representable per character. |
| 1442 | uint64_t JSBigInt::calculateMaximumCharactersRequired(unsigned length, unsigned radix, Digit lastDigit, bool sign) |
| 1443 | { |
| 1444 | unsigned leadingZeros = clz(lastDigit); |
| 1445 | |
| 1446 | size_t bitLength = length * digitBits - leadingZeros; |
| 1447 | |
| 1448 | // Maximum number of bits we can represent with one character. We'll use this |
| 1449 | // to find an appropriate chunk size below. |
| 1450 | uint8_t maxBitsPerChar = maxBitsPerCharTable[radix]; |
| 1451 | |
| 1452 | // For estimating result length, we have to be pessimistic and work with |
| 1453 | // the minimum number of bits one character can represent. |
| 1454 | uint8_t minBitsPerChar = maxBitsPerChar - 1; |
| 1455 | |
| 1456 | // Perform the following computation with uint64_t to avoid overflows. |
| 1457 | uint64_t maximumCharactersRequired = bitLength; |
| 1458 | maximumCharactersRequired *= bitsPerCharTableMultiplier; |
| 1459 | |
| 1460 | // Round up. |
| 1461 | maximumCharactersRequired += minBitsPerChar - 1; |
| 1462 | maximumCharactersRequired /= minBitsPerChar; |
| 1463 | maximumCharactersRequired += sign; |
| 1464 | |
| 1465 | return maximumCharactersRequired; |
| 1466 | } |
| 1467 | |
| 1468 | String JSBigInt::toStringBasePowerOfTwo(ExecState* exec, JSBigInt* x, unsigned radix) |
| 1469 | { |
| 1470 | ASSERT(hasOneBitSet(radix)); |
| 1471 | ASSERT(radix >= 2 && radix <= 32); |
| 1472 | ASSERT(!x->isZero()); |
| 1473 | VM& vm = exec->vm(); |
| 1474 | |
| 1475 | const unsigned length = x->length(); |
| 1476 | const bool sign = x->sign(); |
| 1477 | const unsigned bitsPerChar = ctz(radix); |
| 1478 | const unsigned charMask = radix - 1; |
| 1479 | // Compute the length of the resulting string: divide the bit length of the |
| 1480 | // BigInt by the number of bits representable per character (rounding up). |
| 1481 | const Digit msd = x->digit(length - 1); |
| 1482 | |
| 1483 | const unsigned msdLeadingZeros = clz(msd); |
| 1484 | |
| 1485 | const size_t bitLength = length * digitBits - msdLeadingZeros; |
| 1486 | const size_t charsRequired = (bitLength + bitsPerChar - 1) / bitsPerChar + sign; |
| 1487 | |
| 1488 | if (charsRequired > JSString::MaxLength) { |
| 1489 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 1490 | throwOutOfMemoryError(exec, scope); |
| 1491 | return String(); |
| 1492 | } |
| 1493 | |
| 1494 | Vector<LChar> resultString(charsRequired); |
| 1495 | Digit digit = 0; |
| 1496 | // Keeps track of how many unprocessed bits there are in {digit}. |
| 1497 | unsigned availableBits = 0; |
| 1498 | int pos = static_cast<int>(charsRequired - 1); |
| 1499 | for (unsigned i = 0; i < length - 1; i++) { |
| 1500 | Digit newDigit = x->digit(i); |
| 1501 | // Take any leftover bits from the last iteration into account. |
| 1502 | int current = (digit | (newDigit << availableBits)) & charMask; |
| 1503 | resultString[pos--] = radixDigits[current]; |
| 1504 | int consumedBits = bitsPerChar - availableBits; |
| 1505 | digit = newDigit >> consumedBits; |
| 1506 | availableBits = digitBits - consumedBits; |
| 1507 | while (availableBits >= bitsPerChar) { |
| 1508 | resultString[pos--] = radixDigits[digit & charMask]; |
| 1509 | digit >>= bitsPerChar; |
| 1510 | availableBits -= bitsPerChar; |
| 1511 | } |
| 1512 | } |
| 1513 | // Take any leftover bits from the last iteration into account. |
| 1514 | int current = (digit | (msd << availableBits)) & charMask; |
| 1515 | resultString[pos--] = radixDigits[current]; |
| 1516 | digit = msd >> (bitsPerChar - availableBits); |
| 1517 | while (digit) { |
| 1518 | resultString[pos--] = radixDigits[digit & charMask]; |
| 1519 | digit >>= bitsPerChar; |
| 1520 | } |
| 1521 | |
| 1522 | if (sign) |
| 1523 | resultString[pos--] = '-'; |
| 1524 | |
| 1525 | ASSERT(pos == -1); |
| 1526 | return StringImpl::adopt(WTFMove(resultString)); |
| 1527 | } |
| 1528 | |
| 1529 | String JSBigInt::toStringGeneric(ExecState* exec, JSBigInt* x, unsigned radix) |
| 1530 | { |
| 1531 | // FIXME: [JSC] Revisit usage of Vector into JSBigInt::toString |
| 1532 | // https://bugs.webkit.org/show_bug.cgi?id=18067 |
| 1533 | Vector<LChar> resultString; |
| 1534 | |
| 1535 | VM& vm = exec->vm(); |
| 1536 | |
| 1537 | ASSERT(radix >= 2 && radix <= 36); |
| 1538 | ASSERT(!x->isZero()); |
| 1539 | |
| 1540 | unsigned length = x->length(); |
| 1541 | bool sign = x->sign(); |
| 1542 | |
| 1543 | uint8_t maxBitsPerChar = maxBitsPerCharTable[radix]; |
| 1544 | uint64_t maximumCharactersRequired = calculateMaximumCharactersRequired(length, radix, x->digit(length - 1), sign); |
| 1545 | |
| 1546 | if (maximumCharactersRequired > JSString::MaxLength) { |
| 1547 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 1548 | throwOutOfMemoryError(exec, scope); |
| 1549 | return String(); |
| 1550 | } |
| 1551 | |
| 1552 | Digit lastDigit; |
| 1553 | if (length == 1) |
| 1554 | lastDigit = x->digit(0); |
| 1555 | else { |
| 1556 | unsigned chunkChars = digitBits * bitsPerCharTableMultiplier / maxBitsPerChar; |
| 1557 | Digit chunkDivisor = digitPow(radix, chunkChars); |
| 1558 | |
| 1559 | // By construction of chunkChars, there can't have been overflow. |
| 1560 | ASSERT(chunkDivisor); |
| 1561 | unsigned nonZeroDigit = length - 1; |
| 1562 | ASSERT(x->digit(nonZeroDigit)); |
| 1563 | |
| 1564 | // {rest} holds the part of the BigInt that we haven't looked at yet. |
| 1565 | // Not to be confused with "remainder"! |
| 1566 | JSBigInt* rest = nullptr; |
| 1567 | |
| 1568 | // In the first round, divide the input, allocating a new BigInt for |
| 1569 | // the result == rest; from then on divide the rest in-place. |
| 1570 | JSBigInt** dividend = &x; |
| 1571 | do { |
| 1572 | Digit chunk; |
| 1573 | absoluteDivWithDigitDivisor(vm, *dividend, chunkDivisor, &rest, chunk); |
| 1574 | dividend = &rest; |
| 1575 | for (unsigned i = 0; i < chunkChars; i++) { |
| 1576 | resultString.append(radixDigits[chunk % radix]); |
| 1577 | chunk /= radix; |
| 1578 | } |
| 1579 | ASSERT(!chunk); |
| 1580 | |
| 1581 | if (!rest->digit(nonZeroDigit)) |
| 1582 | nonZeroDigit--; |
| 1583 | |
| 1584 | // We can never clear more than one digit per iteration, because |
| 1585 | // chunkDivisor is smaller than max digit value. |
| 1586 | ASSERT(rest->digit(nonZeroDigit)); |
| 1587 | } while (nonZeroDigit > 0); |
| 1588 | |
| 1589 | lastDigit = rest->digit(0); |
| 1590 | } |
| 1591 | |
| 1592 | do { |
| 1593 | resultString.append(radixDigits[lastDigit % radix]); |
| 1594 | lastDigit /= radix; |
| 1595 | } while (lastDigit > 0); |
| 1596 | ASSERT(resultString.size()); |
| 1597 | ASSERT(resultString.size() <= static_cast<size_t>(maximumCharactersRequired)); |
| 1598 | |
| 1599 | // Remove leading zeroes. |
| 1600 | unsigned newSizeNoLeadingZeroes = resultString.size(); |
| 1601 | while (newSizeNoLeadingZeroes > 1 && resultString[newSizeNoLeadingZeroes - 1] == '0') |
| 1602 | newSizeNoLeadingZeroes--; |
| 1603 | |
| 1604 | resultString.shrink(newSizeNoLeadingZeroes); |
| 1605 | |
| 1606 | if (sign) |
| 1607 | resultString.append('-'); |
| 1608 | |
| 1609 | std::reverse(resultString.begin(), resultString.end()); |
| 1610 | |
| 1611 | return StringImpl::adopt(WTFMove(resultString)); |
| 1612 | } |
| 1613 | |
| 1614 | JSBigInt* JSBigInt::rightTrim(VM& vm) |
| 1615 | { |
| 1616 | if (isZero()) { |
| 1617 | ASSERT(!sign()); |
| 1618 | return this; |
| 1619 | } |
| 1620 | |
| 1621 | int nonZeroIndex = m_length - 1; |
| 1622 | while (nonZeroIndex >= 0 && !digit(nonZeroIndex)) |
| 1623 | nonZeroIndex--; |
| 1624 | |
| 1625 | if (nonZeroIndex < 0) |
| 1626 | return createZero(vm); |
| 1627 | |
| 1628 | if (nonZeroIndex == static_cast<int>(m_length - 1)) |
| 1629 | return this; |
| 1630 | |
| 1631 | unsigned newLength = nonZeroIndex + 1; |
| 1632 | JSBigInt* trimmedBigInt = createWithLengthUnchecked(vm, newLength); |
| 1633 | std::copy(dataStorage(), dataStorage() + newLength, trimmedBigInt->dataStorage()); |
| 1634 | |
| 1635 | trimmedBigInt->setSign(this->sign()); |
| 1636 | |
| 1637 | return trimmedBigInt; |
| 1638 | } |
| 1639 | |
| 1640 | JSBigInt* JSBigInt::allocateFor(ExecState* exec, VM& vm, unsigned radix, unsigned charcount) |
| 1641 | { |
| 1642 | ASSERT(2 <= radix && radix <= 36); |
| 1643 | |
| 1644 | size_t bitsPerChar = maxBitsPerCharTable[radix]; |
| 1645 | size_t chars = charcount; |
| 1646 | const unsigned roundup = bitsPerCharTableMultiplier - 1; |
| 1647 | if (chars <= (std::numeric_limits<size_t>::max() - roundup) / bitsPerChar) { |
| 1648 | size_t bitsMin = bitsPerChar * chars; |
| 1649 | |
| 1650 | // Divide by 32 (see table), rounding up. |
| 1651 | bitsMin = (bitsMin + roundup) >> bitsPerCharTableShift; |
| 1652 | if (bitsMin <= static_cast<size_t>(maxInt)) { |
| 1653 | // Divide by kDigitsBits, rounding up. |
| 1654 | unsigned length = (bitsMin + digitBits - 1) / digitBits; |
| 1655 | if (length <= maxLength) { |
| 1656 | JSBigInt* result = JSBigInt::createWithLengthUnchecked(vm, length); |
| 1657 | return result; |
| 1658 | } |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | if (exec) { |
| 1663 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 1664 | throwOutOfMemoryError(exec, scope); |
| 1665 | } |
| 1666 | return nullptr; |
| 1667 | } |
| 1668 | |
| 1669 | size_t JSBigInt::estimatedSize(JSCell* cell, VM& vm) |
| 1670 | { |
| 1671 | return Base::estimatedSize(cell, vm) + jsCast<JSBigInt*>(cell)->m_length * sizeof(Digit); |
| 1672 | } |
| 1673 | |
| 1674 | double JSBigInt::toNumber(ExecState* exec) const |
| 1675 | { |
| 1676 | VM& vm = exec->vm(); |
| 1677 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 1678 | throwTypeError(exec, scope, "Conversion from 'BigInt' to 'number' is not allowed."_s ); |
| 1679 | return 0.0; |
| 1680 | } |
| 1681 | |
| 1682 | bool JSBigInt::getPrimitiveNumber(ExecState* exec, double& number, JSValue& result) const |
| 1683 | { |
| 1684 | result = this; |
| 1685 | number = toNumber(exec); |
| 1686 | return true; |
| 1687 | } |
| 1688 | |
| 1689 | template <typename CharType> |
| 1690 | JSBigInt* JSBigInt::parseInt(ExecState* exec, CharType* data, unsigned length, ErrorParseMode errorParseMode) |
| 1691 | { |
| 1692 | VM& vm = exec->vm(); |
| 1693 | |
| 1694 | unsigned p = 0; |
| 1695 | while (p < length && isStrWhiteSpace(data[p])) |
| 1696 | ++p; |
| 1697 | |
| 1698 | // Check Radix from frist characters |
| 1699 | if (static_cast<unsigned>(p) + 1 < static_cast<unsigned>(length) && data[p] == '0') { |
| 1700 | if (isASCIIAlphaCaselessEqual(data[p + 1], 'b')) |
| 1701 | return parseInt(exec, vm, data, length, p + 2, 2, errorParseMode, ParseIntSign::Unsigned, ParseIntMode::DisallowEmptyString); |
| 1702 | |
| 1703 | if (isASCIIAlphaCaselessEqual(data[p + 1], 'x')) |
| 1704 | return parseInt(exec, vm, data, length, p + 2, 16, errorParseMode, ParseIntSign::Unsigned, ParseIntMode::DisallowEmptyString); |
| 1705 | |
| 1706 | if (isASCIIAlphaCaselessEqual(data[p + 1], 'o')) |
| 1707 | return parseInt(exec, vm, data, length, p + 2, 8, errorParseMode, ParseIntSign::Unsigned, ParseIntMode::DisallowEmptyString); |
| 1708 | } |
| 1709 | |
| 1710 | ParseIntSign sign = ParseIntSign::Unsigned; |
| 1711 | if (p < length) { |
| 1712 | if (data[p] == '+') |
| 1713 | ++p; |
| 1714 | else if (data[p] == '-') { |
| 1715 | sign = ParseIntSign::Signed; |
| 1716 | ++p; |
| 1717 | } |
| 1718 | } |
| 1719 | |
| 1720 | JSBigInt* result = parseInt(exec, vm, data, length, p, 10, errorParseMode, sign); |
| 1721 | |
| 1722 | if (result && !result->isZero()) |
| 1723 | result->setSign(sign == ParseIntSign::Signed); |
| 1724 | |
| 1725 | return result; |
| 1726 | } |
| 1727 | |
| 1728 | template <typename CharType> |
| 1729 | JSBigInt* JSBigInt::parseInt(ExecState* exec, VM& vm, CharType* data, unsigned length, unsigned startIndex, unsigned radix, ErrorParseMode errorParseMode, ParseIntSign sign, ParseIntMode parseMode) |
| 1730 | { |
| 1731 | ASSERT(length >= 0); |
| 1732 | unsigned p = startIndex; |
| 1733 | |
| 1734 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 1735 | |
| 1736 | if (parseMode != ParseIntMode::AllowEmptyString && startIndex == length) { |
| 1737 | ASSERT(exec); |
| 1738 | if (errorParseMode == ErrorParseMode::ThrowExceptions) |
| 1739 | throwVMError(exec, scope, createSyntaxError(exec, "Failed to parse String to BigInt" )); |
| 1740 | return nullptr; |
| 1741 | } |
| 1742 | |
| 1743 | // Skipping leading zeros |
| 1744 | while (p < length && data[p] == '0') |
| 1745 | ++p; |
| 1746 | |
| 1747 | int endIndex = length - 1; |
| 1748 | // Removing trailing spaces |
| 1749 | while (endIndex >= static_cast<int>(p) && isStrWhiteSpace(data[endIndex])) |
| 1750 | --endIndex; |
| 1751 | |
| 1752 | length = endIndex + 1; |
| 1753 | |
| 1754 | if (p == length) |
| 1755 | return createZero(vm); |
| 1756 | |
| 1757 | unsigned limit0 = '0' + (radix < 10 ? radix : 10); |
| 1758 | unsigned limita = 'a' + (radix - 10); |
| 1759 | unsigned limitA = 'A' + (radix - 10); |
| 1760 | |
| 1761 | JSBigInt* result = allocateFor(exec, vm, radix, length - p); |
| 1762 | RETURN_IF_EXCEPTION(scope, nullptr); |
| 1763 | |
| 1764 | result->initialize(InitializationType::WithZero); |
| 1765 | |
| 1766 | for (unsigned i = p; i < length; i++, p++) { |
| 1767 | uint32_t digit; |
| 1768 | if (data[i] >= '0' && data[i] < limit0) |
| 1769 | digit = data[i] - '0'; |
| 1770 | else if (data[i] >= 'a' && data[i] < limita) |
| 1771 | digit = data[i] - 'a' + 10; |
| 1772 | else if (data[i] >= 'A' && data[i] < limitA) |
| 1773 | digit = data[i] - 'A' + 10; |
| 1774 | else |
| 1775 | break; |
| 1776 | |
| 1777 | result->inplaceMultiplyAdd(static_cast<Digit>(radix), static_cast<Digit>(digit)); |
| 1778 | } |
| 1779 | |
| 1780 | result->setSign(sign == ParseIntSign::Signed ? true : false); |
| 1781 | if (p == length) |
| 1782 | return result->rightTrim(vm); |
| 1783 | |
| 1784 | ASSERT(exec); |
| 1785 | if (errorParseMode == ErrorParseMode::ThrowExceptions) |
| 1786 | throwVMError(exec, scope, createSyntaxError(exec, "Failed to parse String to BigInt" )); |
| 1787 | |
| 1788 | return nullptr; |
| 1789 | } |
| 1790 | |
| 1791 | inline JSBigInt::Digit JSBigInt::digit(unsigned n) |
| 1792 | { |
| 1793 | ASSERT(n < length()); |
| 1794 | return dataStorage()[n]; |
| 1795 | } |
| 1796 | |
| 1797 | inline void JSBigInt::setDigit(unsigned n, Digit value) |
| 1798 | { |
| 1799 | ASSERT(n < length()); |
| 1800 | dataStorage()[n] = value; |
| 1801 | } |
| 1802 | |
| 1803 | JSObject* JSBigInt::toObject(ExecState* exec, JSGlobalObject* globalObject) const |
| 1804 | { |
| 1805 | return BigIntObject::create(exec->vm(), globalObject, const_cast<JSBigInt*>(this)); |
| 1806 | } |
| 1807 | |
| 1808 | bool JSBigInt::equalsToNumber(JSValue numValue) |
| 1809 | { |
| 1810 | ASSERT(numValue.isNumber()); |
| 1811 | |
| 1812 | if (numValue.isInt32()) { |
| 1813 | int value = numValue.asInt32(); |
| 1814 | if (!value) |
| 1815 | return this->isZero(); |
| 1816 | |
| 1817 | return (this->length() == 1) && (this->sign() == (value < 0)) && (this->digit(0) == static_cast<Digit>(std::abs(static_cast<int64_t>(value)))); |
| 1818 | } |
| 1819 | |
| 1820 | double value = numValue.asDouble(); |
| 1821 | return compareToDouble(this, value) == ComparisonResult::Equal; |
| 1822 | } |
| 1823 | |
| 1824 | JSBigInt::ComparisonResult JSBigInt::compareToDouble(JSBigInt* x, double y) |
| 1825 | { |
| 1826 | // This algorithm expect that the double format is IEEE 754 |
| 1827 | |
| 1828 | uint64_t doubleBits = bitwise_cast<uint64_t>(y); |
| 1829 | int rawExponent = static_cast<int>(doubleBits >> 52) & 0x7FF; |
| 1830 | |
| 1831 | if (rawExponent == 0x7FF) { |
| 1832 | if (std::isnan(y)) |
| 1833 | return ComparisonResult::Undefined; |
| 1834 | |
| 1835 | return (y == std::numeric_limits<double>::infinity()) ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| 1836 | } |
| 1837 | |
| 1838 | bool xSign = x->sign(); |
| 1839 | |
| 1840 | // Note that this is different from the double's sign bit for -0. That's |
| 1841 | // intentional because -0 must be treated like 0. |
| 1842 | bool ySign = y < 0; |
| 1843 | if (xSign != ySign) |
| 1844 | return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| 1845 | |
| 1846 | if (!y) { |
| 1847 | ASSERT(!xSign); |
| 1848 | return x->isZero() ? ComparisonResult::Equal : ComparisonResult::GreaterThan; |
| 1849 | } |
| 1850 | |
| 1851 | if (x->isZero()) |
| 1852 | return ComparisonResult::LessThan; |
| 1853 | |
| 1854 | uint64_t mantissa = doubleBits & 0x000FFFFFFFFFFFFF; |
| 1855 | |
| 1856 | // Non-finite doubles are handled above. |
| 1857 | ASSERT(rawExponent != 0x7FF); |
| 1858 | int exponent = rawExponent - 0x3FF; |
| 1859 | if (exponent < 0) { |
| 1860 | // The absolute value of the double is less than 1. Only 0n has an |
| 1861 | // absolute value smaller than that, but we've already covered that case. |
| 1862 | return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| 1863 | } |
| 1864 | |
| 1865 | int xLength = x->length(); |
| 1866 | Digit xMSD = x->digit(xLength - 1); |
| 1867 | int msdLeadingZeros = clz(xMSD); |
| 1868 | |
| 1869 | int xBitLength = xLength * digitBits - msdLeadingZeros; |
| 1870 | int yBitLength = exponent + 1; |
| 1871 | if (xBitLength < yBitLength) |
| 1872 | return xSign? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| 1873 | |
| 1874 | if (xBitLength > yBitLength) |
| 1875 | return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| 1876 | |
| 1877 | // At this point, we know that signs and bit lengths (i.e. position of |
| 1878 | // the most significant bit in exponent-free representation) are identical. |
| 1879 | // {x} is not zero, {y} is finite and not denormal. |
| 1880 | // Now we virtually convert the double to an integer by shifting its |
| 1881 | // mantissa according to its exponent, so it will align with the BigInt {x}, |
| 1882 | // and then we compare them bit for bit until we find a difference or the |
| 1883 | // least significant bit. |
| 1884 | // <----- 52 ------> <-- virtual trailing zeroes --> |
| 1885 | // y / mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000 |
| 1886 | // x / digits: 0001xxxx xxxxxxxx xxxxxxxx ... |
| 1887 | // <--> <------> |
| 1888 | // msdTopBit digitBits |
| 1889 | // |
| 1890 | mantissa |= 0x0010000000000000; |
| 1891 | const int mantissaTopBit = 52; // 0-indexed. |
| 1892 | |
| 1893 | // 0-indexed position of {x}'s most significant bit within the {msd}. |
| 1894 | int msdTopBit = digitBits - 1 - msdLeadingZeros; |
| 1895 | ASSERT(msdTopBit == static_cast<int>((xBitLength - 1) % digitBits)); |
| 1896 | |
| 1897 | // Shifted chunk of {mantissa} for comparing with {digit}. |
| 1898 | Digit compareMantissa; |
| 1899 | |
| 1900 | // Number of unprocessed bits in {mantissa}. We'll keep them shifted to |
| 1901 | // the left (i.e. most significant part) of the underlying uint64_t. |
| 1902 | int remainingMantissaBits = 0; |
| 1903 | |
| 1904 | // First, compare the most significant digit against the beginning of |
| 1905 | // the mantissa and then we align them. |
| 1906 | if (msdTopBit < mantissaTopBit) { |
| 1907 | remainingMantissaBits = (mantissaTopBit - msdTopBit); |
| 1908 | compareMantissa = static_cast<Digit>(mantissa >> remainingMantissaBits); |
| 1909 | mantissa = mantissa << (64 - remainingMantissaBits); |
| 1910 | } else { |
| 1911 | compareMantissa = static_cast<Digit>(mantissa << (msdTopBit - mantissaTopBit)); |
| 1912 | mantissa = 0; |
| 1913 | } |
| 1914 | |
| 1915 | if (xMSD > compareMantissa) |
| 1916 | return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| 1917 | |
| 1918 | if (xMSD < compareMantissa) |
| 1919 | return xSign ? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| 1920 | |
| 1921 | // Then, compare additional digits against any remaining mantissa bits. |
| 1922 | for (int digitIndex = xLength - 2; digitIndex >= 0; digitIndex--) { |
| 1923 | if (remainingMantissaBits > 0) { |
| 1924 | remainingMantissaBits -= digitBits; |
| 1925 | if (sizeof(mantissa) != sizeof(xMSD)) { |
| 1926 | compareMantissa = static_cast<Digit>(mantissa >> (64 - digitBits)); |
| 1927 | // "& 63" to appease compilers. digitBits is 32 here anyway. |
| 1928 | mantissa = mantissa << (digitBits & 63); |
| 1929 | } else { |
| 1930 | compareMantissa = static_cast<Digit>(mantissa); |
| 1931 | mantissa = 0; |
| 1932 | } |
| 1933 | } else |
| 1934 | compareMantissa = 0; |
| 1935 | |
| 1936 | Digit digit = x->digit(digitIndex); |
| 1937 | if (digit > compareMantissa) |
| 1938 | return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| 1939 | if (digit < compareMantissa) |
| 1940 | return xSign ? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| 1941 | } |
| 1942 | |
| 1943 | // Integer parts are equal; check whether {y} has a fractional part. |
| 1944 | if (mantissa) { |
| 1945 | ASSERT(remainingMantissaBits > 0); |
| 1946 | return xSign ? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| 1947 | } |
| 1948 | |
| 1949 | return ComparisonResult::Equal; |
| 1950 | } |
| 1951 | |
| 1952 | Optional<JSBigInt::Digit> JSBigInt::toShiftAmount(JSBigInt* x) |
| 1953 | { |
| 1954 | if (x->length() > 1) |
| 1955 | return WTF::nullopt; |
| 1956 | |
| 1957 | Digit value = x->digit(0); |
| 1958 | static_assert(maxLengthBits < std::numeric_limits<Digit>::max(), "maxLengthBits needs to be less than digit" ); |
| 1959 | |
| 1960 | if (value > maxLengthBits) |
| 1961 | return WTF::nullopt; |
| 1962 | |
| 1963 | return value; |
| 1964 | } |
| 1965 | |
| 1966 | } // namespace JSC |
| 1967 | |