| 1 | /* |
| 2 | * Copyright (C) 1999-2001 Harri Porten (porten@kde.org) |
| 3 | * Copyright (C) 2001 Peter Kelly (pmk@post.com) |
| 4 | * Copyright (C) 2003, 2006, 2007, 2008, 2009, 2010, 2011, 2013 Apple Inc. All rights reserved. |
| 5 | * |
| 6 | * This library is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU Library General Public |
| 8 | * License as published by the Free Software Foundation; either |
| 9 | * version 2 of the License, or (at your option) any later version. |
| 10 | * |
| 11 | * This library is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | * Library General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Library General Public License |
| 17 | * along with this library; see the file COPYING.LIB. If not, write to |
| 18 | * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| 19 | * Boston, MA 02110-1301, USA. |
| 20 | * |
| 21 | */ |
| 22 | |
| 23 | #pragma once |
| 24 | |
| 25 | #include "ExecutableInfo.h" |
| 26 | #include "Lexer.h" |
| 27 | #include "ModuleScopeData.h" |
| 28 | #include "Nodes.h" |
| 29 | #include "ParseHash.h" |
| 30 | #include "ParserArena.h" |
| 31 | #include "ParserError.h" |
| 32 | #include "ParserFunctionInfo.h" |
| 33 | #include "ParserTokens.h" |
| 34 | #include "SourceProvider.h" |
| 35 | #include "SourceProviderCache.h" |
| 36 | #include "SourceProviderCacheItem.h" |
| 37 | #include "VariableEnvironment.h" |
| 38 | #include <wtf/Forward.h> |
| 39 | #include <wtf/Noncopyable.h> |
| 40 | #include <wtf/RefPtr.h> |
| 41 | |
| 42 | namespace JSC { |
| 43 | |
| 44 | class FunctionMetadataNode; |
| 45 | class FunctionParameters; |
| 46 | class Identifier; |
| 47 | class VM; |
| 48 | class SourceCode; |
| 49 | class SyntaxChecker; |
| 50 | struct DebuggerParseData; |
| 51 | |
| 52 | // Macros to make the more common TreeBuilder types a little less verbose |
| 53 | #define TreeStatement typename TreeBuilder::Statement |
| 54 | #define TreeExpression typename TreeBuilder::Expression |
| 55 | #define TreeFormalParameterList typename TreeBuilder::FormalParameterList |
| 56 | #define TreeSourceElements typename TreeBuilder::SourceElements |
| 57 | #define TreeClause typename TreeBuilder::Clause |
| 58 | #define TreeClauseList typename TreeBuilder::ClauseList |
| 59 | #define TreeArguments typename TreeBuilder::Arguments |
| 60 | #define TreeArgumentsList typename TreeBuilder::ArgumentsList |
| 61 | #define TreeFunctionBody typename TreeBuilder::FunctionBody |
| 62 | #define TreeClassExpression typename TreeBuilder::ClassExpression |
| 63 | #define TreeProperty typename TreeBuilder::Property |
| 64 | #define TreePropertyList typename TreeBuilder::PropertyList |
| 65 | #define TreeDestructuringPattern typename TreeBuilder::DestructuringPattern |
| 66 | |
| 67 | COMPILE_ASSERT(LastUntaggedToken < 64, LessThan64UntaggedTokens); |
| 68 | |
| 69 | enum SourceElementsMode { CheckForStrictMode, DontCheckForStrictMode }; |
| 70 | enum FunctionBodyType { ArrowFunctionBodyExpression, ArrowFunctionBodyBlock, StandardFunctionBodyBlock }; |
| 71 | enum class FunctionNameRequirements { None, Named, Unnamed }; |
| 72 | |
| 73 | enum class DestructuringKind { |
| 74 | DestructureToVariables, |
| 75 | DestructureToLet, |
| 76 | DestructureToConst, |
| 77 | DestructureToCatchParameters, |
| 78 | DestructureToParameters, |
| 79 | DestructureToExpressions |
| 80 | }; |
| 81 | |
| 82 | enum class DeclarationType { |
| 83 | VarDeclaration, |
| 84 | LetDeclaration, |
| 85 | ConstDeclaration |
| 86 | }; |
| 87 | |
| 88 | enum class DeclarationImportType { |
| 89 | Imported, |
| 90 | ImportedNamespace, |
| 91 | NotImported |
| 92 | }; |
| 93 | |
| 94 | enum DeclarationResult { |
| 95 | Valid = 0, |
| 96 | InvalidStrictMode = 1 << 0, |
| 97 | InvalidDuplicateDeclaration = 1 << 1 |
| 98 | }; |
| 99 | |
| 100 | typedef uint8_t DeclarationResultMask; |
| 101 | |
| 102 | enum class DeclarationDefaultContext { |
| 103 | Standard, |
| 104 | ExportDefault, |
| 105 | }; |
| 106 | |
| 107 | enum class InferName { |
| 108 | Allowed, |
| 109 | Disallowed, |
| 110 | }; |
| 111 | |
| 112 | template <typename T> inline bool isEvalNode() { return false; } |
| 113 | template <> inline bool isEvalNode<EvalNode>() { return true; } |
| 114 | |
| 115 | struct ScopeLabelInfo { |
| 116 | UniquedStringImpl* uid; |
| 117 | bool isLoop; |
| 118 | }; |
| 119 | |
| 120 | ALWAYS_INLINE static bool isArguments(const VM* vm, const Identifier* ident) |
| 121 | { |
| 122 | return vm->propertyNames->arguments == *ident; |
| 123 | } |
| 124 | ALWAYS_INLINE static bool isEval(const VM* vm, const Identifier* ident) |
| 125 | { |
| 126 | return vm->propertyNames->eval == *ident; |
| 127 | } |
| 128 | ALWAYS_INLINE static bool isEvalOrArgumentsIdentifier(const VM* vm, const Identifier* ident) |
| 129 | { |
| 130 | return isEval(vm, ident) || isArguments(vm, ident); |
| 131 | } |
| 132 | ALWAYS_INLINE static bool isIdentifierOrKeyword(const JSToken& token) |
| 133 | { |
| 134 | return token.m_type == IDENT || token.m_type & KeywordTokenFlag; |
| 135 | } |
| 136 | // _Any_ContextualKeyword includes keywords such as "let" or "yield", which have a specific meaning depending on the current parse mode |
| 137 | // or strict mode. These helpers allow to treat all contextual keywords as identifiers as required. |
| 138 | ALWAYS_INLINE static bool isAnyContextualKeyword(const JSToken& token) |
| 139 | { |
| 140 | return token.m_type >= FirstContextualKeywordToken && token.m_type <= LastContextualKeywordToken; |
| 141 | } |
| 142 | ALWAYS_INLINE static bool isIdentifierOrAnyContextualKeyword(const JSToken& token) |
| 143 | { |
| 144 | return token.m_type == IDENT || isAnyContextualKeyword(token); |
| 145 | } |
| 146 | // _Safe_ContextualKeyword includes only contextual keywords which can be treated as identifiers independently from parse mode. The exeption |
| 147 | // to this rule is `await`, but matchSpecIdentifier() always treats it as an identifier regardless. |
| 148 | ALWAYS_INLINE static bool isSafeContextualKeyword(const JSToken& token) |
| 149 | { |
| 150 | return token.m_type >= FirstSafeContextualKeywordToken && token.m_type <= LastSafeContextualKeywordToken; |
| 151 | } |
| 152 | |
| 153 | struct Scope { |
| 154 | WTF_MAKE_NONCOPYABLE(Scope); |
| 155 | |
| 156 | public: |
| 157 | Scope(const VM* vm, bool isFunction, bool isGenerator, bool strictMode, bool isArrowFunction, bool isAsyncFunction) |
| 158 | : m_vm(vm) |
| 159 | , m_shadowsArguments(false) |
| 160 | , m_usesEval(false) |
| 161 | , m_needsFullActivation(false) |
| 162 | , m_hasDirectSuper(false) |
| 163 | , m_needsSuperBinding(false) |
| 164 | , m_allowsVarDeclarations(true) |
| 165 | , m_allowsLexicalDeclarations(true) |
| 166 | , m_strictMode(strictMode) |
| 167 | , m_isFunction(isFunction) |
| 168 | , m_isGenerator(isGenerator) |
| 169 | , m_isGeneratorBoundary(false) |
| 170 | , m_isArrowFunction(isArrowFunction) |
| 171 | , m_isArrowFunctionBoundary(false) |
| 172 | , m_isAsyncFunction(isAsyncFunction) |
| 173 | , m_isAsyncFunctionBoundary(false) |
| 174 | , m_isLexicalScope(false) |
| 175 | , m_isGlobalCodeScope(false) |
| 176 | , m_isSimpleCatchParameterScope(false) |
| 177 | , m_isFunctionBoundary(false) |
| 178 | , m_isValidStrictMode(true) |
| 179 | , m_hasArguments(false) |
| 180 | , m_isEvalContext(false) |
| 181 | , m_hasNonSimpleParameterList(false) |
| 182 | , m_evalContextType(EvalContextType::None) |
| 183 | , m_constructorKind(static_cast<unsigned>(ConstructorKind::None)) |
| 184 | , m_expectedSuperBinding(static_cast<unsigned>(SuperBinding::NotNeeded)) |
| 185 | , m_loopDepth(0) |
| 186 | , m_switchDepth(0) |
| 187 | , m_innerArrowFunctionFeatures(0) |
| 188 | { |
| 189 | m_usedVariables.append(UniquedStringImplPtrSet()); |
| 190 | } |
| 191 | |
| 192 | Scope(Scope&&) = default; |
| 193 | |
| 194 | void startSwitch() { m_switchDepth++; } |
| 195 | void endSwitch() { m_switchDepth--; } |
| 196 | void startLoop() { m_loopDepth++; } |
| 197 | void endLoop() { ASSERT(m_loopDepth); m_loopDepth--; } |
| 198 | bool inLoop() { return !!m_loopDepth; } |
| 199 | bool breakIsValid() { return m_loopDepth || m_switchDepth; } |
| 200 | bool continueIsValid() { return m_loopDepth; } |
| 201 | |
| 202 | void pushLabel(const Identifier* label, bool isLoop) |
| 203 | { |
| 204 | if (!m_labels) |
| 205 | m_labels = std::make_unique<LabelStack>(); |
| 206 | m_labels->append(ScopeLabelInfo { label->impl(), isLoop }); |
| 207 | } |
| 208 | |
| 209 | void popLabel() |
| 210 | { |
| 211 | ASSERT(m_labels); |
| 212 | ASSERT(m_labels->size()); |
| 213 | m_labels->removeLast(); |
| 214 | } |
| 215 | |
| 216 | ScopeLabelInfo* getLabel(const Identifier* label) |
| 217 | { |
| 218 | if (!m_labels) |
| 219 | return 0; |
| 220 | for (int i = m_labels->size(); i > 0; i--) { |
| 221 | if (m_labels->at(i - 1).uid == label->impl()) |
| 222 | return &m_labels->at(i - 1); |
| 223 | } |
| 224 | return 0; |
| 225 | } |
| 226 | |
| 227 | void setSourceParseMode(SourceParseMode mode) |
| 228 | { |
| 229 | switch (mode) { |
| 230 | case SourceParseMode::AsyncGeneratorBodyMode: |
| 231 | setIsAsyncGeneratorFunctionBody(); |
| 232 | break; |
| 233 | case SourceParseMode::AsyncArrowFunctionBodyMode: |
| 234 | setIsAsyncArrowFunctionBody(); |
| 235 | break; |
| 236 | |
| 237 | case SourceParseMode::AsyncFunctionBodyMode: |
| 238 | setIsAsyncFunctionBody(); |
| 239 | break; |
| 240 | |
| 241 | case SourceParseMode::GeneratorBodyMode: |
| 242 | setIsGenerator(); |
| 243 | break; |
| 244 | |
| 245 | case SourceParseMode::GeneratorWrapperFunctionMode: |
| 246 | case SourceParseMode::GeneratorWrapperMethodMode: |
| 247 | setIsGeneratorFunction(); |
| 248 | break; |
| 249 | |
| 250 | case SourceParseMode::AsyncGeneratorWrapperMethodMode: |
| 251 | case SourceParseMode::AsyncGeneratorWrapperFunctionMode: |
| 252 | setIsAsyncGeneratorFunction(); |
| 253 | break; |
| 254 | |
| 255 | case SourceParseMode::NormalFunctionMode: |
| 256 | case SourceParseMode::GetterMode: |
| 257 | case SourceParseMode::SetterMode: |
| 258 | case SourceParseMode::MethodMode: |
| 259 | setIsFunction(); |
| 260 | break; |
| 261 | |
| 262 | case SourceParseMode::ArrowFunctionMode: |
| 263 | setIsArrowFunction(); |
| 264 | break; |
| 265 | |
| 266 | case SourceParseMode::AsyncFunctionMode: |
| 267 | case SourceParseMode::AsyncMethodMode: |
| 268 | setIsAsyncFunction(); |
| 269 | break; |
| 270 | |
| 271 | case SourceParseMode::AsyncArrowFunctionMode: |
| 272 | setIsAsyncArrowFunction(); |
| 273 | break; |
| 274 | |
| 275 | case SourceParseMode::ProgramMode: |
| 276 | case SourceParseMode::ModuleAnalyzeMode: |
| 277 | case SourceParseMode::ModuleEvaluateMode: |
| 278 | break; |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | bool isFunction() const { return m_isFunction; } |
| 283 | bool isFunctionBoundary() const { return m_isFunctionBoundary; } |
| 284 | bool isGenerator() const { return m_isGenerator; } |
| 285 | bool isGeneratorBoundary() const { return m_isGeneratorBoundary; } |
| 286 | bool isAsyncFunction() const { return m_isAsyncFunction; } |
| 287 | bool isAsyncFunctionBoundary() const { return m_isAsyncFunctionBoundary; } |
| 288 | |
| 289 | bool hasArguments() const { return m_hasArguments; } |
| 290 | |
| 291 | void setIsGlobalCodeScope() { m_isGlobalCodeScope = true; } |
| 292 | bool isGlobalCodeScope() const { return m_isGlobalCodeScope; } |
| 293 | |
| 294 | void setIsSimpleCatchParameterScope() { m_isSimpleCatchParameterScope = true; } |
| 295 | bool isSimpleCatchParameterScope() { return m_isSimpleCatchParameterScope; } |
| 296 | |
| 297 | void setIsLexicalScope() |
| 298 | { |
| 299 | m_isLexicalScope = true; |
| 300 | m_allowsLexicalDeclarations = true; |
| 301 | } |
| 302 | bool isLexicalScope() { return m_isLexicalScope; } |
| 303 | bool usesEval() { return m_usesEval; } |
| 304 | |
| 305 | const HashSet<UniquedStringImpl*>& closedVariableCandidates() const { return m_closedVariableCandidates; } |
| 306 | VariableEnvironment& declaredVariables() { return m_declaredVariables; } |
| 307 | VariableEnvironment& lexicalVariables() { return m_lexicalVariables; } |
| 308 | VariableEnvironment& finalizeLexicalEnvironment() |
| 309 | { |
| 310 | if (m_usesEval || m_needsFullActivation) |
| 311 | m_lexicalVariables.markAllVariablesAsCaptured(); |
| 312 | else |
| 313 | computeLexicallyCapturedVariablesAndPurgeCandidates(); |
| 314 | |
| 315 | return m_lexicalVariables; |
| 316 | } |
| 317 | |
| 318 | void computeLexicallyCapturedVariablesAndPurgeCandidates() |
| 319 | { |
| 320 | // Because variables may be defined at any time in the range of a lexical scope, we must |
| 321 | // track lexical variables that might be captured. Then, when we're preparing to pop the top |
| 322 | // lexical scope off the stack, we should find which variables are truly captured, and which |
| 323 | // variable still may be captured in a parent scope. |
| 324 | if (m_lexicalVariables.size() && m_closedVariableCandidates.size()) { |
| 325 | for (UniquedStringImpl* impl : m_closedVariableCandidates) |
| 326 | m_lexicalVariables.markVariableAsCapturedIfDefined(impl); |
| 327 | } |
| 328 | |
| 329 | // We can now purge values from the captured candidates because they're captured in this scope. |
| 330 | { |
| 331 | for (auto entry : m_lexicalVariables) { |
| 332 | if (entry.value.isCaptured()) |
| 333 | m_closedVariableCandidates.remove(entry.key.get()); |
| 334 | } |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | DeclarationResultMask declareCallee(const Identifier* ident) |
| 339 | { |
| 340 | auto addResult = m_declaredVariables.add(ident->impl()); |
| 341 | // We want to track if callee is captured, but we don't want to act like it's a 'var' |
| 342 | // because that would cause the BytecodeGenerator to emit bad code. |
| 343 | addResult.iterator->value.clearIsVar(); |
| 344 | |
| 345 | DeclarationResultMask result = DeclarationResult::Valid; |
| 346 | if (isEvalOrArgumentsIdentifier(m_vm, ident)) |
| 347 | result |= DeclarationResult::InvalidStrictMode; |
| 348 | return result; |
| 349 | } |
| 350 | |
| 351 | DeclarationResultMask declareVariable(const Identifier* ident) |
| 352 | { |
| 353 | ASSERT(m_allowsVarDeclarations); |
| 354 | DeclarationResultMask result = DeclarationResult::Valid; |
| 355 | bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident); |
| 356 | m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode; |
| 357 | auto addResult = m_declaredVariables.add(ident->impl()); |
| 358 | addResult.iterator->value.setIsVar(); |
| 359 | if (!isValidStrictMode) |
| 360 | result |= DeclarationResult::InvalidStrictMode; |
| 361 | return result; |
| 362 | } |
| 363 | |
| 364 | DeclarationResultMask declareFunction(const Identifier* ident, bool declareAsVar, bool isSloppyModeHoistingCandidate) |
| 365 | { |
| 366 | ASSERT(m_allowsVarDeclarations || m_allowsLexicalDeclarations); |
| 367 | DeclarationResultMask result = DeclarationResult::Valid; |
| 368 | bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident); |
| 369 | if (!isValidStrictMode) |
| 370 | result |= DeclarationResult::InvalidStrictMode; |
| 371 | m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode; |
| 372 | auto addResult = declareAsVar ? m_declaredVariables.add(ident->impl()) : m_lexicalVariables.add(ident->impl()); |
| 373 | if (isSloppyModeHoistingCandidate) |
| 374 | addResult.iterator->value.setIsSloppyModeHoistingCandidate(); |
| 375 | if (declareAsVar) { |
| 376 | addResult.iterator->value.setIsVar(); |
| 377 | if (m_lexicalVariables.contains(ident->impl())) |
| 378 | result |= DeclarationResult::InvalidDuplicateDeclaration; |
| 379 | } else { |
| 380 | addResult.iterator->value.setIsLet(); |
| 381 | ASSERT_WITH_MESSAGE(!m_declaredVariables.size(), "We should only declare a function as a lexically scoped variable in scopes where var declarations aren't allowed. I.e, in strict mode and not at the top-level scope of a function or program." ); |
| 382 | if (!addResult.isNewEntry) { |
| 383 | if (!isSloppyModeHoistingCandidate || !addResult.iterator->value.isFunction()) |
| 384 | result |= DeclarationResult::InvalidDuplicateDeclaration; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | addResult.iterator->value.setIsFunction(); |
| 389 | |
| 390 | return result; |
| 391 | } |
| 392 | |
| 393 | void addVariableBeingHoisted(const Identifier* ident) |
| 394 | { |
| 395 | ASSERT(!m_allowsVarDeclarations); |
| 396 | m_variablesBeingHoisted.add(ident->impl()); |
| 397 | } |
| 398 | |
| 399 | void addSloppyModeHoistableFunctionCandidate(const Identifier* ident) |
| 400 | { |
| 401 | ASSERT(m_allowsVarDeclarations); |
| 402 | m_sloppyModeHoistableFunctionCandidates.add(ident->impl()); |
| 403 | } |
| 404 | |
| 405 | void appendFunction(FunctionMetadataNode* node) |
| 406 | { |
| 407 | ASSERT(node); |
| 408 | m_functionDeclarations.append(node); |
| 409 | } |
| 410 | DeclarationStacks::FunctionStack&& takeFunctionDeclarations() { return WTFMove(m_functionDeclarations); } |
| 411 | |
| 412 | |
| 413 | DeclarationResultMask declareLexicalVariable(const Identifier* ident, bool isConstant, DeclarationImportType importType = DeclarationImportType::NotImported) |
| 414 | { |
| 415 | ASSERT(m_allowsLexicalDeclarations); |
| 416 | DeclarationResultMask result = DeclarationResult::Valid; |
| 417 | bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident); |
| 418 | m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode; |
| 419 | auto addResult = m_lexicalVariables.add(ident->impl()); |
| 420 | if (isConstant) |
| 421 | addResult.iterator->value.setIsConst(); |
| 422 | else |
| 423 | addResult.iterator->value.setIsLet(); |
| 424 | |
| 425 | if (importType == DeclarationImportType::Imported) |
| 426 | addResult.iterator->value.setIsImported(); |
| 427 | else if (importType == DeclarationImportType::ImportedNamespace) { |
| 428 | addResult.iterator->value.setIsImported(); |
| 429 | addResult.iterator->value.setIsImportedNamespace(); |
| 430 | } |
| 431 | |
| 432 | if (!addResult.isNewEntry || m_variablesBeingHoisted.contains(ident->impl())) |
| 433 | result |= DeclarationResult::InvalidDuplicateDeclaration; |
| 434 | if (!isValidStrictMode) |
| 435 | result |= DeclarationResult::InvalidStrictMode; |
| 436 | |
| 437 | return result; |
| 438 | } |
| 439 | |
| 440 | ALWAYS_INLINE bool hasDeclaredVariable(const Identifier& ident) |
| 441 | { |
| 442 | return hasDeclaredVariable(ident.impl()); |
| 443 | } |
| 444 | |
| 445 | bool hasDeclaredVariable(const RefPtr<UniquedStringImpl>& ident) |
| 446 | { |
| 447 | auto iter = m_declaredVariables.find(ident.get()); |
| 448 | if (iter == m_declaredVariables.end()) |
| 449 | return false; |
| 450 | VariableEnvironmentEntry entry = iter->value; |
| 451 | return entry.isVar(); // The callee isn't a "var". |
| 452 | } |
| 453 | |
| 454 | ALWAYS_INLINE bool hasLexicallyDeclaredVariable(const Identifier& ident) |
| 455 | { |
| 456 | return hasLexicallyDeclaredVariable(ident.impl()); |
| 457 | } |
| 458 | |
| 459 | bool hasLexicallyDeclaredVariable(const RefPtr<UniquedStringImpl>& ident) const |
| 460 | { |
| 461 | return m_lexicalVariables.contains(ident.get()); |
| 462 | } |
| 463 | |
| 464 | ALWAYS_INLINE bool hasDeclaredParameter(const Identifier& ident) |
| 465 | { |
| 466 | return hasDeclaredParameter(ident.impl()); |
| 467 | } |
| 468 | |
| 469 | bool hasDeclaredParameter(const RefPtr<UniquedStringImpl>& ident) |
| 470 | { |
| 471 | return m_declaredParameters.contains(ident.get()) || hasDeclaredVariable(ident); |
| 472 | } |
| 473 | |
| 474 | void preventAllVariableDeclarations() |
| 475 | { |
| 476 | m_allowsVarDeclarations = false; |
| 477 | m_allowsLexicalDeclarations = false; |
| 478 | } |
| 479 | void preventVarDeclarations() { m_allowsVarDeclarations = false; } |
| 480 | bool allowsVarDeclarations() const { return m_allowsVarDeclarations; } |
| 481 | bool allowsLexicalDeclarations() const { return m_allowsLexicalDeclarations; } |
| 482 | |
| 483 | DeclarationResultMask declareParameter(const Identifier* ident) |
| 484 | { |
| 485 | ASSERT(m_allowsVarDeclarations); |
| 486 | DeclarationResultMask result = DeclarationResult::Valid; |
| 487 | bool isArgumentsIdent = isArguments(m_vm, ident); |
| 488 | auto addResult = m_declaredVariables.add(ident->impl()); |
| 489 | bool isValidStrictMode = (addResult.isNewEntry || !addResult.iterator->value.isParameter()) |
| 490 | && m_vm->propertyNames->eval != *ident && !isArgumentsIdent; |
| 491 | addResult.iterator->value.clearIsVar(); |
| 492 | addResult.iterator->value.setIsParameter(); |
| 493 | m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode; |
| 494 | m_declaredParameters.add(ident->impl()); |
| 495 | if (!isValidStrictMode) |
| 496 | result |= DeclarationResult::InvalidStrictMode; |
| 497 | if (isArgumentsIdent) |
| 498 | m_shadowsArguments = true; |
| 499 | if (!addResult.isNewEntry) |
| 500 | result |= DeclarationResult::InvalidDuplicateDeclaration; |
| 501 | |
| 502 | return result; |
| 503 | } |
| 504 | |
| 505 | bool usedVariablesContains(UniquedStringImpl* impl) const |
| 506 | { |
| 507 | for (const UniquedStringImplPtrSet& set : m_usedVariables) { |
| 508 | if (set.contains(impl)) |
| 509 | return true; |
| 510 | } |
| 511 | return false; |
| 512 | } |
| 513 | template <typename Func> |
| 514 | void forEachUsedVariable(const Func& func) |
| 515 | { |
| 516 | for (const UniquedStringImplPtrSet& set : m_usedVariables) { |
| 517 | for (UniquedStringImpl* impl : set) |
| 518 | func(impl); |
| 519 | } |
| 520 | } |
| 521 | void useVariable(const Identifier* ident, bool isEval) |
| 522 | { |
| 523 | useVariable(ident->impl(), isEval); |
| 524 | } |
| 525 | void useVariable(UniquedStringImpl* impl, bool isEval) |
| 526 | { |
| 527 | m_usesEval |= isEval; |
| 528 | m_usedVariables.last().add(impl); |
| 529 | } |
| 530 | |
| 531 | void pushUsedVariableSet() { m_usedVariables.append(UniquedStringImplPtrSet()); } |
| 532 | size_t currentUsedVariablesSize() { return m_usedVariables.size(); } |
| 533 | |
| 534 | void revertToPreviousUsedVariables(size_t size) { m_usedVariables.resize(size); } |
| 535 | |
| 536 | void setNeedsFullActivation() { m_needsFullActivation = true; } |
| 537 | bool needsFullActivation() const { return m_needsFullActivation; } |
| 538 | bool isArrowFunctionBoundary() { return m_isArrowFunctionBoundary; } |
| 539 | bool isArrowFunction() { return m_isArrowFunction; } |
| 540 | |
| 541 | bool hasDirectSuper() const { return m_hasDirectSuper; } |
| 542 | bool setHasDirectSuper() { return std::exchange(m_hasDirectSuper, true); } |
| 543 | |
| 544 | bool needsSuperBinding() const { return m_needsSuperBinding; } |
| 545 | bool setNeedsSuperBinding() { return std::exchange(m_needsSuperBinding, true); } |
| 546 | |
| 547 | void setEvalContextType(EvalContextType evalContextType) { m_evalContextType = evalContextType; } |
| 548 | EvalContextType evalContextType() { return m_evalContextType; } |
| 549 | |
| 550 | InnerArrowFunctionCodeFeatures innerArrowFunctionFeatures() { return m_innerArrowFunctionFeatures; } |
| 551 | |
| 552 | void setExpectedSuperBinding(SuperBinding superBinding) { m_expectedSuperBinding = static_cast<unsigned>(superBinding); } |
| 553 | SuperBinding expectedSuperBinding() const { return static_cast<SuperBinding>(m_expectedSuperBinding); } |
| 554 | void setConstructorKind(ConstructorKind constructorKind) { m_constructorKind = static_cast<unsigned>(constructorKind); } |
| 555 | ConstructorKind constructorKind() const { return static_cast<ConstructorKind>(m_constructorKind); } |
| 556 | |
| 557 | void setInnerArrowFunctionUsesSuperCall() { m_innerArrowFunctionFeatures |= SuperCallInnerArrowFunctionFeature; } |
| 558 | void setInnerArrowFunctionUsesSuperProperty() { m_innerArrowFunctionFeatures |= SuperPropertyInnerArrowFunctionFeature; } |
| 559 | void setInnerArrowFunctionUsesEval() { m_innerArrowFunctionFeatures |= EvalInnerArrowFunctionFeature; } |
| 560 | void setInnerArrowFunctionUsesThis() { m_innerArrowFunctionFeatures |= ThisInnerArrowFunctionFeature; } |
| 561 | void setInnerArrowFunctionUsesNewTarget() { m_innerArrowFunctionFeatures |= NewTargetInnerArrowFunctionFeature; } |
| 562 | void setInnerArrowFunctionUsesArguments() { m_innerArrowFunctionFeatures |= ArgumentsInnerArrowFunctionFeature; } |
| 563 | |
| 564 | bool isEvalContext() const { return m_isEvalContext; } |
| 565 | void setIsEvalContext(bool isEvalContext) { m_isEvalContext = isEvalContext; } |
| 566 | |
| 567 | void setInnerArrowFunctionUsesEvalAndUseArgumentsIfNeeded() |
| 568 | { |
| 569 | ASSERT(m_isArrowFunction); |
| 570 | |
| 571 | if (m_usesEval) |
| 572 | setInnerArrowFunctionUsesEval(); |
| 573 | |
| 574 | if (usedVariablesContains(m_vm->propertyNames->arguments.impl())) |
| 575 | setInnerArrowFunctionUsesArguments(); |
| 576 | } |
| 577 | |
| 578 | void addClosedVariableCandidateUnconditionally(UniquedStringImpl* impl) |
| 579 | { |
| 580 | m_closedVariableCandidates.add(impl); |
| 581 | } |
| 582 | |
| 583 | void collectFreeVariables(Scope* nestedScope, bool shouldTrackClosedVariables) |
| 584 | { |
| 585 | if (nestedScope->m_usesEval) |
| 586 | m_usesEval = true; |
| 587 | |
| 588 | { |
| 589 | UniquedStringImplPtrSet& destinationSet = m_usedVariables.last(); |
| 590 | for (const UniquedStringImplPtrSet& usedVariablesSet : nestedScope->m_usedVariables) { |
| 591 | for (UniquedStringImpl* impl : usedVariablesSet) { |
| 592 | if (nestedScope->m_declaredVariables.contains(impl) || nestedScope->m_lexicalVariables.contains(impl)) |
| 593 | continue; |
| 594 | |
| 595 | // "arguments" reference should be resolved at function boudary. |
| 596 | if (nestedScope->isFunctionBoundary() && nestedScope->hasArguments() && impl == m_vm->propertyNames->arguments.impl() && !nestedScope->isArrowFunctionBoundary()) |
| 597 | continue; |
| 598 | |
| 599 | destinationSet.add(impl); |
| 600 | // We don't want a declared variable that is used in an inner scope to be thought of as captured if |
| 601 | // that inner scope is both a lexical scope and not a function. Only inner functions and "catch" |
| 602 | // statements can cause variables to be captured. |
| 603 | if (shouldTrackClosedVariables && (nestedScope->m_isFunctionBoundary || !nestedScope->m_isLexicalScope)) |
| 604 | m_closedVariableCandidates.add(impl); |
| 605 | } |
| 606 | } |
| 607 | } |
| 608 | // Propagate closed variable candidates downwards within the same function. |
| 609 | // Cross function captures will be realized via m_usedVariables propagation. |
| 610 | if (shouldTrackClosedVariables && !nestedScope->m_isFunctionBoundary && nestedScope->m_closedVariableCandidates.size()) { |
| 611 | auto end = nestedScope->m_closedVariableCandidates.end(); |
| 612 | auto begin = nestedScope->m_closedVariableCandidates.begin(); |
| 613 | m_closedVariableCandidates.add(begin, end); |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | void mergeInnerArrowFunctionFeatures(InnerArrowFunctionCodeFeatures arrowFunctionCodeFeatures) |
| 618 | { |
| 619 | m_innerArrowFunctionFeatures = m_innerArrowFunctionFeatures | arrowFunctionCodeFeatures; |
| 620 | } |
| 621 | |
| 622 | void getSloppyModeHoistedFunctions(UniquedStringImplPtrSet& sloppyModeHoistedFunctions) |
| 623 | { |
| 624 | for (UniquedStringImpl* function : m_sloppyModeHoistableFunctionCandidates) { |
| 625 | // ES6 Annex B.3.3. The only time we can't hoist a function is if a syntax error would |
| 626 | // be caused by declaring a var with that function's name or if we have a parameter with |
| 627 | // that function's name. Note that we would only cause a syntax error if we had a let/const/class |
| 628 | // variable with the same name. |
| 629 | if (!m_lexicalVariables.contains(function)) { |
| 630 | auto iter = m_declaredVariables.find(function); |
| 631 | bool isParameter = iter != m_declaredVariables.end() && iter->value.isParameter(); |
| 632 | if (!isParameter) { |
| 633 | auto addResult = m_declaredVariables.add(function); |
| 634 | addResult.iterator->value.setIsVar(); |
| 635 | addResult.iterator->value.setIsSloppyModeHoistingCandidate(); |
| 636 | sloppyModeHoistedFunctions.add(function); |
| 637 | } |
| 638 | } |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | void getCapturedVars(IdentifierSet& capturedVariables) |
| 643 | { |
| 644 | if (m_needsFullActivation || m_usesEval) { |
| 645 | for (auto& entry : m_declaredVariables) |
| 646 | capturedVariables.add(entry.key); |
| 647 | return; |
| 648 | } |
| 649 | for (UniquedStringImpl* impl : m_closedVariableCandidates) { |
| 650 | // We refer to m_declaredVariables here directly instead of a hasDeclaredVariable because we want to mark the callee as captured. |
| 651 | if (!m_declaredVariables.contains(impl)) |
| 652 | continue; |
| 653 | capturedVariables.add(impl); |
| 654 | } |
| 655 | } |
| 656 | void setStrictMode() { m_strictMode = true; } |
| 657 | bool strictMode() const { return m_strictMode; } |
| 658 | bool isValidStrictMode() const { return m_isValidStrictMode; } |
| 659 | bool shadowsArguments() const { return m_shadowsArguments; } |
| 660 | void setHasNonSimpleParameterList() |
| 661 | { |
| 662 | m_isValidStrictMode = false; |
| 663 | m_hasNonSimpleParameterList = true; |
| 664 | } |
| 665 | bool hasNonSimpleParameterList() const { return m_hasNonSimpleParameterList; } |
| 666 | |
| 667 | void copyCapturedVariablesToVector(const UniquedStringImplPtrSet& usedVariables, Vector<UniquedStringImpl*, 8>& vector) |
| 668 | { |
| 669 | for (UniquedStringImpl* impl : usedVariables) { |
| 670 | if (m_declaredVariables.contains(impl) || m_lexicalVariables.contains(impl)) |
| 671 | continue; |
| 672 | vector.append(impl); |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | void fillParametersForSourceProviderCache(SourceProviderCacheItemCreationParameters& parameters, const UniquedStringImplPtrSet& capturesFromParameterExpressions) |
| 677 | { |
| 678 | ASSERT(m_isFunction); |
| 679 | parameters.usesEval = m_usesEval; |
| 680 | parameters.strictMode = m_strictMode; |
| 681 | parameters.needsFullActivation = m_needsFullActivation; |
| 682 | parameters.innerArrowFunctionFeatures = m_innerArrowFunctionFeatures; |
| 683 | parameters.needsSuperBinding = m_needsSuperBinding; |
| 684 | for (const UniquedStringImplPtrSet& set : m_usedVariables) |
| 685 | copyCapturedVariablesToVector(set, parameters.usedVariables); |
| 686 | |
| 687 | // FIXME: https://bugs.webkit.org/show_bug.cgi?id=156962 |
| 688 | // We add these unconditionally because we currently don't keep a separate |
| 689 | // declaration scope for a function's parameters and its var/let/const declarations. |
| 690 | // This is somewhat unfortunate and we should refactor to do this at some point |
| 691 | // because parameters logically form a parent scope to var/let/const variables. |
| 692 | // But because we don't do this, we must grab capture candidates from a parameter |
| 693 | // list before we parse the body of a function because the body's declarations |
| 694 | // might make us believe something isn't actually a capture candidate when it really |
| 695 | // is. |
| 696 | for (UniquedStringImpl* impl : capturesFromParameterExpressions) |
| 697 | parameters.usedVariables.append(impl); |
| 698 | } |
| 699 | |
| 700 | void restoreFromSourceProviderCache(const SourceProviderCacheItem* info) |
| 701 | { |
| 702 | ASSERT(m_isFunction); |
| 703 | m_usesEval = info->usesEval; |
| 704 | m_strictMode = info->strictMode; |
| 705 | m_innerArrowFunctionFeatures = info->innerArrowFunctionFeatures; |
| 706 | m_needsFullActivation = info->needsFullActivation; |
| 707 | m_needsSuperBinding = info->needsSuperBinding; |
| 708 | UniquedStringImplPtrSet& destSet = m_usedVariables.last(); |
| 709 | for (unsigned i = 0; i < info->usedVariablesCount; ++i) |
| 710 | destSet.add(info->usedVariables()[i]); |
| 711 | } |
| 712 | |
| 713 | class MaybeParseAsGeneratorForScope; |
| 714 | |
| 715 | private: |
| 716 | void setIsFunction() |
| 717 | { |
| 718 | m_isFunction = true; |
| 719 | m_isFunctionBoundary = true; |
| 720 | m_hasArguments = true; |
| 721 | setIsLexicalScope(); |
| 722 | m_isGenerator = false; |
| 723 | m_isGeneratorBoundary = false; |
| 724 | m_isArrowFunctionBoundary = false; |
| 725 | m_isArrowFunction = false; |
| 726 | m_isAsyncFunction = false; |
| 727 | m_isAsyncFunctionBoundary = false; |
| 728 | } |
| 729 | |
| 730 | void setIsGeneratorFunction() |
| 731 | { |
| 732 | setIsFunction(); |
| 733 | m_isGenerator = true; |
| 734 | } |
| 735 | |
| 736 | void setIsGenerator() |
| 737 | { |
| 738 | setIsFunction(); |
| 739 | m_isGenerator = true; |
| 740 | m_isGeneratorBoundary = true; |
| 741 | m_hasArguments = false; |
| 742 | } |
| 743 | |
| 744 | void setIsArrowFunction() |
| 745 | { |
| 746 | setIsFunction(); |
| 747 | m_isArrowFunctionBoundary = true; |
| 748 | m_isArrowFunction = true; |
| 749 | } |
| 750 | |
| 751 | void setIsAsyncArrowFunction() |
| 752 | { |
| 753 | setIsArrowFunction(); |
| 754 | m_isAsyncFunction = true; |
| 755 | } |
| 756 | |
| 757 | void setIsAsyncFunction() |
| 758 | { |
| 759 | setIsFunction(); |
| 760 | m_isAsyncFunction = true; |
| 761 | } |
| 762 | |
| 763 | void setIsAsyncGeneratorFunction() |
| 764 | { |
| 765 | setIsFunction(); |
| 766 | m_isAsyncFunction = true; |
| 767 | m_isGenerator = true; |
| 768 | } |
| 769 | |
| 770 | void setIsAsyncGeneratorFunctionBody() |
| 771 | { |
| 772 | setIsFunction(); |
| 773 | m_hasArguments = false; |
| 774 | m_isGenerator = true; |
| 775 | m_isGeneratorBoundary = true; |
| 776 | m_isAsyncFunction = true; |
| 777 | m_isAsyncFunctionBoundary = true; |
| 778 | } |
| 779 | |
| 780 | void setIsAsyncFunctionBody() |
| 781 | { |
| 782 | setIsFunction(); |
| 783 | m_hasArguments = false; |
| 784 | m_isAsyncFunction = true; |
| 785 | m_isAsyncFunctionBoundary = true; |
| 786 | } |
| 787 | |
| 788 | void setIsAsyncArrowFunctionBody() |
| 789 | { |
| 790 | setIsArrowFunction(); |
| 791 | m_hasArguments = false; |
| 792 | m_isAsyncFunction = true; |
| 793 | m_isAsyncFunctionBoundary = true; |
| 794 | } |
| 795 | |
| 796 | const VM* m_vm; |
| 797 | bool m_shadowsArguments; |
| 798 | bool m_usesEval; |
| 799 | bool m_needsFullActivation; |
| 800 | bool m_hasDirectSuper; |
| 801 | bool m_needsSuperBinding; |
| 802 | bool m_allowsVarDeclarations; |
| 803 | bool m_allowsLexicalDeclarations; |
| 804 | bool m_strictMode; |
| 805 | bool m_isFunction; |
| 806 | bool m_isGenerator; |
| 807 | bool m_isGeneratorBoundary; |
| 808 | bool m_isArrowFunction; |
| 809 | bool m_isArrowFunctionBoundary; |
| 810 | bool m_isAsyncFunction; |
| 811 | bool m_isAsyncFunctionBoundary; |
| 812 | bool m_isLexicalScope; |
| 813 | bool m_isGlobalCodeScope; |
| 814 | bool m_isSimpleCatchParameterScope; |
| 815 | bool m_isFunctionBoundary; |
| 816 | bool m_isValidStrictMode; |
| 817 | bool m_hasArguments; |
| 818 | bool m_isEvalContext; |
| 819 | bool m_hasNonSimpleParameterList; |
| 820 | EvalContextType m_evalContextType; |
| 821 | unsigned m_constructorKind; |
| 822 | unsigned m_expectedSuperBinding; |
| 823 | int m_loopDepth; |
| 824 | int m_switchDepth; |
| 825 | InnerArrowFunctionCodeFeatures m_innerArrowFunctionFeatures; |
| 826 | |
| 827 | typedef Vector<ScopeLabelInfo, 2> LabelStack; |
| 828 | std::unique_ptr<LabelStack> m_labels; |
| 829 | UniquedStringImplPtrSet m_declaredParameters; |
| 830 | VariableEnvironment m_declaredVariables; |
| 831 | VariableEnvironment m_lexicalVariables; |
| 832 | Vector<UniquedStringImplPtrSet, 6> m_usedVariables; |
| 833 | UniquedStringImplPtrSet m_variablesBeingHoisted; |
| 834 | UniquedStringImplPtrSet m_sloppyModeHoistableFunctionCandidates; |
| 835 | HashSet<UniquedStringImpl*> m_closedVariableCandidates; |
| 836 | DeclarationStacks::FunctionStack m_functionDeclarations; |
| 837 | }; |
| 838 | |
| 839 | typedef Vector<Scope, 10> ScopeStack; |
| 840 | |
| 841 | struct ScopeRef { |
| 842 | ScopeRef(ScopeStack* scopeStack, unsigned index) |
| 843 | : m_scopeStack(scopeStack) |
| 844 | , m_index(index) |
| 845 | { |
| 846 | } |
| 847 | Scope* operator->() { return &m_scopeStack->at(m_index); } |
| 848 | unsigned index() const { return m_index; } |
| 849 | |
| 850 | bool hasContainingScope() |
| 851 | { |
| 852 | return m_index && !m_scopeStack->at(m_index).isFunctionBoundary(); |
| 853 | } |
| 854 | |
| 855 | ScopeRef containingScope() |
| 856 | { |
| 857 | ASSERT(hasContainingScope()); |
| 858 | return ScopeRef(m_scopeStack, m_index - 1); |
| 859 | } |
| 860 | |
| 861 | bool operator==(const ScopeRef& other) |
| 862 | { |
| 863 | ASSERT(other.m_scopeStack == m_scopeStack); |
| 864 | return m_index == other.m_index; |
| 865 | } |
| 866 | |
| 867 | bool operator!=(const ScopeRef& other) |
| 868 | { |
| 869 | return !(*this == other); |
| 870 | } |
| 871 | |
| 872 | private: |
| 873 | ScopeStack* m_scopeStack; |
| 874 | unsigned m_index; |
| 875 | }; |
| 876 | |
| 877 | enum class ArgumentType { Normal, Spread }; |
| 878 | enum class ParsingContext { Program, FunctionConstructor, Eval }; |
| 879 | |
| 880 | template <typename LexerType> |
| 881 | class Parser { |
| 882 | WTF_MAKE_NONCOPYABLE(Parser); |
| 883 | WTF_MAKE_FAST_ALLOCATED; |
| 884 | |
| 885 | public: |
| 886 | Parser(VM*, const SourceCode&, JSParserBuiltinMode, JSParserStrictMode, JSParserScriptMode, SourceParseMode, SuperBinding, ConstructorKind defaultConstructorKind = ConstructorKind::None, DerivedContextType = DerivedContextType::None, bool isEvalContext = false, EvalContextType = EvalContextType::None, DebuggerParseData* = nullptr); |
| 887 | ~Parser(); |
| 888 | |
| 889 | template <class ParsedNode> |
| 890 | std::unique_ptr<ParsedNode> parse(ParserError&, const Identifier&, SourceParseMode, ParsingContext, Optional<int> functionConstructorParametersEndPosition = WTF::nullopt); |
| 891 | |
| 892 | JSTextPosition positionBeforeLastNewline() const { return m_lexer->positionBeforeLastNewline(); } |
| 893 | JSTokenLocation locationBeforeLastToken() const { return m_lexer->lastTokenLocation(); } |
| 894 | |
| 895 | struct CallOrApplyDepthScope { |
| 896 | CallOrApplyDepthScope(Parser* parser) |
| 897 | : m_parser(parser) |
| 898 | , m_parent(parser->m_callOrApplyDepthScope) |
| 899 | , m_depth(m_parent ? m_parent->m_depth + 1 : 0) |
| 900 | , m_depthOfInnermostChild(m_depth) |
| 901 | { |
| 902 | parser->m_callOrApplyDepthScope = this; |
| 903 | } |
| 904 | |
| 905 | size_t distanceToInnermostChild() const |
| 906 | { |
| 907 | ASSERT(m_depthOfInnermostChild >= m_depth); |
| 908 | return m_depthOfInnermostChild - m_depth; |
| 909 | } |
| 910 | |
| 911 | ~CallOrApplyDepthScope() |
| 912 | { |
| 913 | if (m_parent) |
| 914 | m_parent->m_depthOfInnermostChild = std::max(m_depthOfInnermostChild, m_parent->m_depthOfInnermostChild); |
| 915 | m_parser->m_callOrApplyDepthScope = m_parent; |
| 916 | } |
| 917 | |
| 918 | private: |
| 919 | |
| 920 | Parser* m_parser; |
| 921 | CallOrApplyDepthScope* m_parent; |
| 922 | size_t m_depth; |
| 923 | size_t m_depthOfInnermostChild; |
| 924 | }; |
| 925 | |
| 926 | private: |
| 927 | struct AllowInOverride { |
| 928 | AllowInOverride(Parser* parser) |
| 929 | : m_parser(parser) |
| 930 | , m_oldAllowsIn(parser->m_allowsIn) |
| 931 | { |
| 932 | parser->m_allowsIn = true; |
| 933 | } |
| 934 | ~AllowInOverride() |
| 935 | { |
| 936 | m_parser->m_allowsIn = m_oldAllowsIn; |
| 937 | } |
| 938 | Parser* m_parser; |
| 939 | bool m_oldAllowsIn; |
| 940 | }; |
| 941 | |
| 942 | struct AutoPopScopeRef : public ScopeRef { |
| 943 | AutoPopScopeRef(Parser* parser, ScopeRef scope) |
| 944 | : ScopeRef(scope) |
| 945 | , m_parser(parser) |
| 946 | { |
| 947 | } |
| 948 | |
| 949 | ~AutoPopScopeRef() |
| 950 | { |
| 951 | if (m_parser) |
| 952 | m_parser->popScope(*this, false); |
| 953 | } |
| 954 | |
| 955 | void setPopped() |
| 956 | { |
| 957 | m_parser = 0; |
| 958 | } |
| 959 | |
| 960 | private: |
| 961 | Parser* m_parser; |
| 962 | }; |
| 963 | |
| 964 | struct AutoCleanupLexicalScope { |
| 965 | // We can allocate this object on the stack without actually knowing beforehand if we're |
| 966 | // going to create a new lexical scope. If we decide to create a new lexical scope, we |
| 967 | // can pass the scope into this obejct and it will take care of the cleanup for us if the parse fails. |
| 968 | // This is helpful if we may fail from syntax errors after creating a lexical scope conditionally. |
| 969 | AutoCleanupLexicalScope() |
| 970 | : m_scope(nullptr, UINT_MAX) |
| 971 | , m_parser(nullptr) |
| 972 | { |
| 973 | } |
| 974 | |
| 975 | ~AutoCleanupLexicalScope() |
| 976 | { |
| 977 | // This should only ever be called if we fail from a syntax error. Otherwise |
| 978 | // it's the intention that a user of this class pops this scope manually on a |
| 979 | // successful parse. |
| 980 | if (isValid()) |
| 981 | m_parser->popScope(*this, false); |
| 982 | } |
| 983 | |
| 984 | void setIsValid(ScopeRef& scope, Parser* parser) |
| 985 | { |
| 986 | RELEASE_ASSERT(scope->isLexicalScope()); |
| 987 | m_scope = scope; |
| 988 | m_parser = parser; |
| 989 | } |
| 990 | |
| 991 | bool isValid() const { return !!m_parser; } |
| 992 | |
| 993 | void setPopped() |
| 994 | { |
| 995 | m_parser = nullptr; |
| 996 | } |
| 997 | |
| 998 | ScopeRef& scope() { return m_scope; } |
| 999 | |
| 1000 | private: |
| 1001 | ScopeRef m_scope; |
| 1002 | Parser* m_parser; |
| 1003 | }; |
| 1004 | |
| 1005 | enum ExpressionErrorClass { |
| 1006 | ErrorIndicatesNothing = 0, |
| 1007 | ErrorIndicatesPattern, |
| 1008 | ErrorIndicatesAsyncArrowFunction |
| 1009 | }; |
| 1010 | |
| 1011 | struct ExpressionErrorClassifier { |
| 1012 | ExpressionErrorClassifier(Parser* parser) |
| 1013 | : m_class(ErrorIndicatesNothing) |
| 1014 | , m_previous(parser->m_expressionErrorClassifier) |
| 1015 | , m_parser(parser) |
| 1016 | { |
| 1017 | m_parser->m_expressionErrorClassifier = this; |
| 1018 | } |
| 1019 | |
| 1020 | ~ExpressionErrorClassifier() |
| 1021 | { |
| 1022 | m_parser->m_expressionErrorClassifier = m_previous; |
| 1023 | } |
| 1024 | |
| 1025 | void classifyExpressionError(ExpressionErrorClass classification) |
| 1026 | { |
| 1027 | if (m_class != ErrorIndicatesNothing) |
| 1028 | return; |
| 1029 | m_class = classification; |
| 1030 | } |
| 1031 | |
| 1032 | void forceClassifyExpressionError(ExpressionErrorClass classification) |
| 1033 | { |
| 1034 | m_class = classification; |
| 1035 | } |
| 1036 | |
| 1037 | void reclassifyExpressionError(ExpressionErrorClass oldClassification, ExpressionErrorClass classification) |
| 1038 | { |
| 1039 | if (m_class != oldClassification) |
| 1040 | return; |
| 1041 | m_class = classification; |
| 1042 | } |
| 1043 | |
| 1044 | void propagateExpressionErrorClass() |
| 1045 | { |
| 1046 | if (m_previous) |
| 1047 | m_previous->m_class = m_class; |
| 1048 | } |
| 1049 | |
| 1050 | bool indicatesPossiblePattern() const { return m_class == ErrorIndicatesPattern; } |
| 1051 | bool indicatesPossibleAsyncArrowFunction() const { return m_class == ErrorIndicatesAsyncArrowFunction; } |
| 1052 | |
| 1053 | private: |
| 1054 | ExpressionErrorClass m_class; |
| 1055 | ExpressionErrorClassifier* m_previous; |
| 1056 | Parser* m_parser; |
| 1057 | }; |
| 1058 | |
| 1059 | ALWAYS_INLINE void classifyExpressionError(ExpressionErrorClass classification) |
| 1060 | { |
| 1061 | if (m_expressionErrorClassifier) |
| 1062 | m_expressionErrorClassifier->classifyExpressionError(classification); |
| 1063 | } |
| 1064 | |
| 1065 | ALWAYS_INLINE void forceClassifyExpressionError(ExpressionErrorClass classification) |
| 1066 | { |
| 1067 | if (m_expressionErrorClassifier) |
| 1068 | m_expressionErrorClassifier->forceClassifyExpressionError(classification); |
| 1069 | } |
| 1070 | |
| 1071 | ALWAYS_INLINE void reclassifyExpressionError(ExpressionErrorClass oldClassification, ExpressionErrorClass classification) |
| 1072 | { |
| 1073 | if (m_expressionErrorClassifier) |
| 1074 | m_expressionErrorClassifier->reclassifyExpressionError(oldClassification, classification); |
| 1075 | } |
| 1076 | |
| 1077 | ALWAYS_INLINE DestructuringKind destructuringKindFromDeclarationType(DeclarationType type) |
| 1078 | { |
| 1079 | switch (type) { |
| 1080 | case DeclarationType::VarDeclaration: |
| 1081 | return DestructuringKind::DestructureToVariables; |
| 1082 | case DeclarationType::LetDeclaration: |
| 1083 | return DestructuringKind::DestructureToLet; |
| 1084 | case DeclarationType::ConstDeclaration: |
| 1085 | return DestructuringKind::DestructureToConst; |
| 1086 | } |
| 1087 | |
| 1088 | RELEASE_ASSERT_NOT_REACHED(); |
| 1089 | return DestructuringKind::DestructureToVariables; |
| 1090 | } |
| 1091 | |
| 1092 | ALWAYS_INLINE const char* declarationTypeToVariableKind(DeclarationType type) |
| 1093 | { |
| 1094 | switch (type) { |
| 1095 | case DeclarationType::VarDeclaration: |
| 1096 | return "variable name" ; |
| 1097 | case DeclarationType::LetDeclaration: |
| 1098 | case DeclarationType::ConstDeclaration: |
| 1099 | return "lexical variable name" ; |
| 1100 | } |
| 1101 | RELEASE_ASSERT_NOT_REACHED(); |
| 1102 | return "invalid" ; |
| 1103 | } |
| 1104 | |
| 1105 | ALWAYS_INLINE AssignmentContext assignmentContextFromDeclarationType(DeclarationType type) |
| 1106 | { |
| 1107 | switch (type) { |
| 1108 | case DeclarationType::ConstDeclaration: |
| 1109 | return AssignmentContext::ConstDeclarationStatement; |
| 1110 | default: |
| 1111 | return AssignmentContext::DeclarationStatement; |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | ALWAYS_INLINE bool isEvalOrArguments(const Identifier* ident) { return isEvalOrArgumentsIdentifier(m_vm, ident); } |
| 1116 | |
| 1117 | ScopeRef upperScope(int n) |
| 1118 | { |
| 1119 | ASSERT(m_scopeStack.size() >= size_t(1 + n)); |
| 1120 | return ScopeRef(&m_scopeStack, m_scopeStack.size() - 1 - n); |
| 1121 | } |
| 1122 | |
| 1123 | ScopeRef currentScope() |
| 1124 | { |
| 1125 | return ScopeRef(&m_scopeStack, m_scopeStack.size() - 1); |
| 1126 | } |
| 1127 | |
| 1128 | ScopeRef currentVariableScope() |
| 1129 | { |
| 1130 | unsigned i = m_scopeStack.size() - 1; |
| 1131 | ASSERT(i < m_scopeStack.size()); |
| 1132 | while (!m_scopeStack[i].allowsVarDeclarations()) { |
| 1133 | i--; |
| 1134 | ASSERT(i < m_scopeStack.size()); |
| 1135 | } |
| 1136 | return ScopeRef(&m_scopeStack, i); |
| 1137 | } |
| 1138 | |
| 1139 | ScopeRef currentLexicalDeclarationScope() |
| 1140 | { |
| 1141 | unsigned i = m_scopeStack.size() - 1; |
| 1142 | ASSERT(i < m_scopeStack.size()); |
| 1143 | while (!m_scopeStack[i].allowsLexicalDeclarations()) { |
| 1144 | i--; |
| 1145 | ASSERT(i < m_scopeStack.size()); |
| 1146 | } |
| 1147 | |
| 1148 | return ScopeRef(&m_scopeStack, i); |
| 1149 | } |
| 1150 | |
| 1151 | ScopeRef currentFunctionScope() |
| 1152 | { |
| 1153 | unsigned i = m_scopeStack.size() - 1; |
| 1154 | ASSERT(i < m_scopeStack.size()); |
| 1155 | while (i && !m_scopeStack[i].isFunctionBoundary()) { |
| 1156 | i--; |
| 1157 | ASSERT(i < m_scopeStack.size()); |
| 1158 | } |
| 1159 | // When reaching the top level scope (it can be non function scope), we return it. |
| 1160 | return ScopeRef(&m_scopeStack, i); |
| 1161 | } |
| 1162 | |
| 1163 | ScopeRef closestParentOrdinaryFunctionNonLexicalScope() |
| 1164 | { |
| 1165 | unsigned i = m_scopeStack.size() - 1; |
| 1166 | ASSERT(i < m_scopeStack.size() && m_scopeStack.size()); |
| 1167 | while (i && (!m_scopeStack[i].isFunctionBoundary() || m_scopeStack[i].isGeneratorBoundary() || m_scopeStack[i].isAsyncFunctionBoundary() || m_scopeStack[i].isArrowFunctionBoundary())) |
| 1168 | i--; |
| 1169 | // When reaching the top level scope (it can be non ordinary function scope), we return it. |
| 1170 | return ScopeRef(&m_scopeStack, i); |
| 1171 | } |
| 1172 | |
| 1173 | ScopeRef pushScope() |
| 1174 | { |
| 1175 | bool isFunction = false; |
| 1176 | bool isStrict = false; |
| 1177 | bool isGenerator = false; |
| 1178 | bool isArrowFunction = false; |
| 1179 | bool isAsyncFunction = false; |
| 1180 | if (!m_scopeStack.isEmpty()) { |
| 1181 | isStrict = m_scopeStack.last().strictMode(); |
| 1182 | isFunction = m_scopeStack.last().isFunction(); |
| 1183 | isGenerator = m_scopeStack.last().isGenerator(); |
| 1184 | isArrowFunction = m_scopeStack.last().isArrowFunction(); |
| 1185 | isAsyncFunction = m_scopeStack.last().isAsyncFunction(); |
| 1186 | } |
| 1187 | m_scopeStack.constructAndAppend(m_vm, isFunction, isGenerator, isStrict, isArrowFunction, isAsyncFunction); |
| 1188 | return currentScope(); |
| 1189 | } |
| 1190 | |
| 1191 | void popScopeInternal(ScopeRef& scope, bool shouldTrackClosedVariables) |
| 1192 | { |
| 1193 | EXCEPTION_ASSERT_UNUSED(scope, scope.index() == m_scopeStack.size() - 1); |
| 1194 | ASSERT(m_scopeStack.size() > 1); |
| 1195 | m_scopeStack[m_scopeStack.size() - 2].collectFreeVariables(&m_scopeStack.last(), shouldTrackClosedVariables); |
| 1196 | |
| 1197 | if (m_scopeStack.last().isArrowFunction()) |
| 1198 | m_scopeStack.last().setInnerArrowFunctionUsesEvalAndUseArgumentsIfNeeded(); |
| 1199 | |
| 1200 | if (!(m_scopeStack.last().isFunctionBoundary() && !m_scopeStack.last().isArrowFunctionBoundary())) |
| 1201 | m_scopeStack[m_scopeStack.size() - 2].mergeInnerArrowFunctionFeatures(m_scopeStack.last().innerArrowFunctionFeatures()); |
| 1202 | |
| 1203 | if (!m_scopeStack.last().isFunctionBoundary() && m_scopeStack.last().needsFullActivation()) |
| 1204 | m_scopeStack[m_scopeStack.size() - 2].setNeedsFullActivation(); |
| 1205 | m_scopeStack.removeLast(); |
| 1206 | } |
| 1207 | |
| 1208 | ALWAYS_INLINE void popScope(ScopeRef& scope, bool shouldTrackClosedVariables) |
| 1209 | { |
| 1210 | popScopeInternal(scope, shouldTrackClosedVariables); |
| 1211 | } |
| 1212 | |
| 1213 | ALWAYS_INLINE void popScope(AutoPopScopeRef& scope, bool shouldTrackClosedVariables) |
| 1214 | { |
| 1215 | scope.setPopped(); |
| 1216 | popScopeInternal(scope, shouldTrackClosedVariables); |
| 1217 | } |
| 1218 | |
| 1219 | ALWAYS_INLINE void popScope(AutoCleanupLexicalScope& cleanupScope, bool shouldTrackClosedVariables) |
| 1220 | { |
| 1221 | RELEASE_ASSERT(cleanupScope.isValid()); |
| 1222 | ScopeRef& scope = cleanupScope.scope(); |
| 1223 | cleanupScope.setPopped(); |
| 1224 | popScopeInternal(scope, shouldTrackClosedVariables); |
| 1225 | } |
| 1226 | |
| 1227 | NEVER_INLINE DeclarationResultMask declareHoistedVariable(const Identifier* ident) |
| 1228 | { |
| 1229 | unsigned i = m_scopeStack.size() - 1; |
| 1230 | ASSERT(i < m_scopeStack.size()); |
| 1231 | while (true) { |
| 1232 | // Annex B.3.5 exempts `try {} catch (e) { var e; }` from being a syntax error. |
| 1233 | if (m_scopeStack[i].hasLexicallyDeclaredVariable(*ident) && !m_scopeStack[i].isSimpleCatchParameterScope()) |
| 1234 | return DeclarationResult::InvalidDuplicateDeclaration; |
| 1235 | |
| 1236 | if (m_scopeStack[i].allowsVarDeclarations()) |
| 1237 | return m_scopeStack[i].declareVariable(ident); |
| 1238 | |
| 1239 | m_scopeStack[i].addVariableBeingHoisted(ident); |
| 1240 | |
| 1241 | i--; |
| 1242 | ASSERT(i < m_scopeStack.size()); |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | DeclarationResultMask declareVariable(const Identifier* ident, DeclarationType type = DeclarationType::VarDeclaration, DeclarationImportType importType = DeclarationImportType::NotImported) |
| 1247 | { |
| 1248 | if (type == DeclarationType::VarDeclaration) |
| 1249 | return declareHoistedVariable(ident); |
| 1250 | |
| 1251 | ASSERT(type == DeclarationType::LetDeclaration || type == DeclarationType::ConstDeclaration); |
| 1252 | // Lexical variables declared at a top level scope that shadow arguments or vars are not allowed. |
| 1253 | if (!m_lexer->isReparsingFunction() && m_statementDepth == 1 && (hasDeclaredParameter(*ident) || hasDeclaredVariable(*ident))) |
| 1254 | return DeclarationResult::InvalidDuplicateDeclaration; |
| 1255 | |
| 1256 | return currentLexicalDeclarationScope()->declareLexicalVariable(ident, type == DeclarationType::ConstDeclaration, importType); |
| 1257 | } |
| 1258 | |
| 1259 | std::pair<DeclarationResultMask, ScopeRef> declareFunction(const Identifier* ident) |
| 1260 | { |
| 1261 | if ((m_statementDepth == 1) || (!strictMode() && !currentScope()->isFunction() && !closestParentOrdinaryFunctionNonLexicalScope()->isEvalContext())) { |
| 1262 | // Functions declared at the top-most scope (both in sloppy and strict mode) are declared as vars |
| 1263 | // for backwards compatibility. This allows us to declare functions with the same name more than once. |
| 1264 | // In sloppy mode, we always declare functions as vars. |
| 1265 | bool declareAsVar = true; |
| 1266 | bool isSloppyModeHoistingCandidate = false; |
| 1267 | ScopeRef variableScope = currentVariableScope(); |
| 1268 | return std::make_pair(variableScope->declareFunction(ident, declareAsVar, isSloppyModeHoistingCandidate), variableScope); |
| 1269 | } |
| 1270 | |
| 1271 | if (!strictMode()) { |
| 1272 | ASSERT(currentScope()->isFunction() || closestParentOrdinaryFunctionNonLexicalScope()->isEvalContext()); |
| 1273 | |
| 1274 | // Functions declared inside a function inside a nested block scope in sloppy mode are subject to this |
| 1275 | // crazy rule defined inside Annex B.3.3 in the ES6 spec. It basically states that we will create |
| 1276 | // the function as a local block scoped variable, but when we evaluate the block that the function is |
| 1277 | // contained in, we will assign the function to a "var" variable only if declaring such a "var" wouldn't |
| 1278 | // be a syntax error and if there isn't a parameter with the same name. (It would only be a syntax error if |
| 1279 | // there are is a let/class/const with the same name). Note that this mean we only do the "var" hoisting |
| 1280 | // binding if the block evaluates. For example, this means we wont won't perform the binding if it's inside |
| 1281 | // the untaken branch of an if statement. |
| 1282 | bool declareAsVar = false; |
| 1283 | bool isSloppyModeHoistingCandidate = true; |
| 1284 | ScopeRef lexicalVariableScope = currentLexicalDeclarationScope(); |
| 1285 | ScopeRef varScope = currentVariableScope(); |
| 1286 | varScope->addSloppyModeHoistableFunctionCandidate(ident); |
| 1287 | ASSERT(varScope != lexicalVariableScope); |
| 1288 | return std::make_pair(lexicalVariableScope->declareFunction(ident, declareAsVar, isSloppyModeHoistingCandidate), lexicalVariableScope); |
| 1289 | } |
| 1290 | |
| 1291 | bool declareAsVar = false; |
| 1292 | bool isSloppyModeHoistingCandidate = false; |
| 1293 | ScopeRef lexicalVariableScope = currentLexicalDeclarationScope(); |
| 1294 | return std::make_pair(lexicalVariableScope->declareFunction(ident, declareAsVar, isSloppyModeHoistingCandidate), lexicalVariableScope); |
| 1295 | } |
| 1296 | |
| 1297 | NEVER_INLINE bool hasDeclaredVariable(const Identifier& ident) |
| 1298 | { |
| 1299 | unsigned i = m_scopeStack.size() - 1; |
| 1300 | ASSERT(i < m_scopeStack.size()); |
| 1301 | while (!m_scopeStack[i].allowsVarDeclarations()) { |
| 1302 | i--; |
| 1303 | ASSERT(i < m_scopeStack.size()); |
| 1304 | } |
| 1305 | return m_scopeStack[i].hasDeclaredVariable(ident); |
| 1306 | } |
| 1307 | |
| 1308 | NEVER_INLINE bool hasDeclaredParameter(const Identifier& ident) |
| 1309 | { |
| 1310 | // FIXME: hasDeclaredParameter() is not valid during reparsing of generator or async function bodies, because their formal |
| 1311 | // parameters are declared in a scope unavailable during reparsing. Note that it is redundant to call this function during |
| 1312 | // reparsing anyways, as the function is already guaranteed to be valid by the original parsing. |
| 1313 | // https://bugs.webkit.org/show_bug.cgi?id=164087 |
| 1314 | ASSERT(!m_lexer->isReparsingFunction()); |
| 1315 | |
| 1316 | unsigned i = m_scopeStack.size() - 1; |
| 1317 | ASSERT(i < m_scopeStack.size()); |
| 1318 | while (!m_scopeStack[i].allowsVarDeclarations()) { |
| 1319 | i--; |
| 1320 | ASSERT(i < m_scopeStack.size()); |
| 1321 | } |
| 1322 | |
| 1323 | if (m_scopeStack[i].isGeneratorBoundary() || m_scopeStack[i].isAsyncFunctionBoundary()) { |
| 1324 | // The formal parameters which need to be verified for Generators and Async Function bodies occur |
| 1325 | // in the outer wrapper function, so pick the outer scope here. |
| 1326 | i--; |
| 1327 | ASSERT(i < m_scopeStack.size()); |
| 1328 | } |
| 1329 | return m_scopeStack[i].hasDeclaredParameter(ident); |
| 1330 | } |
| 1331 | |
| 1332 | bool exportName(const Identifier& ident) |
| 1333 | { |
| 1334 | ASSERT(currentScope().index() == 0); |
| 1335 | ASSERT(m_moduleScopeData); |
| 1336 | return m_moduleScopeData->exportName(ident); |
| 1337 | } |
| 1338 | |
| 1339 | ScopeStack m_scopeStack; |
| 1340 | |
| 1341 | const SourceProviderCacheItem* findCachedFunctionInfo(int openBracePos) |
| 1342 | { |
| 1343 | return m_functionCache ? m_functionCache->get(openBracePos) : 0; |
| 1344 | } |
| 1345 | |
| 1346 | Parser(); |
| 1347 | |
| 1348 | String parseInner(const Identifier&, SourceParseMode, ParsingContext, Optional<int> functionConstructorParametersEndPosition = WTF::nullopt); |
| 1349 | |
| 1350 | void didFinishParsing(SourceElements*, DeclarationStacks::FunctionStack&&, VariableEnvironment&, UniquedStringImplPtrSet&&, CodeFeatures, int); |
| 1351 | |
| 1352 | // Used to determine type of error to report. |
| 1353 | bool isFunctionMetadataNode(ScopeNode*) { return false; } |
| 1354 | bool isFunctionMetadataNode(FunctionMetadataNode*) { return true; } |
| 1355 | |
| 1356 | ALWAYS_INLINE void next(unsigned lexerFlags = 0) |
| 1357 | { |
| 1358 | int lastLine = m_token.m_location.line; |
| 1359 | int lastTokenEnd = m_token.m_location.endOffset; |
| 1360 | int lastTokenLineStart = m_token.m_location.lineStartOffset; |
| 1361 | m_lastTokenEndPosition = JSTextPosition(lastLine, lastTokenEnd, lastTokenLineStart); |
| 1362 | m_lexer->setLastLineNumber(lastLine); |
| 1363 | m_token.m_type = m_lexer->lex(&m_token, lexerFlags, strictMode()); |
| 1364 | } |
| 1365 | |
| 1366 | ALWAYS_INLINE void nextWithoutClearingLineTerminator(unsigned lexerFlags = 0) |
| 1367 | { |
| 1368 | int lastLine = m_token.m_location.line; |
| 1369 | int lastTokenEnd = m_token.m_location.endOffset; |
| 1370 | int lastTokenLineStart = m_token.m_location.lineStartOffset; |
| 1371 | m_lastTokenEndPosition = JSTextPosition(lastLine, lastTokenEnd, lastTokenLineStart); |
| 1372 | m_lexer->setLastLineNumber(lastLine); |
| 1373 | m_token.m_type = m_lexer->lexWithoutClearingLineTerminator(&m_token, lexerFlags, strictMode()); |
| 1374 | } |
| 1375 | |
| 1376 | ALWAYS_INLINE void nextExpectIdentifier(unsigned lexerFlags = 0) |
| 1377 | { |
| 1378 | int lastLine = m_token.m_location.line; |
| 1379 | int lastTokenEnd = m_token.m_location.endOffset; |
| 1380 | int lastTokenLineStart = m_token.m_location.lineStartOffset; |
| 1381 | m_lastTokenEndPosition = JSTextPosition(lastLine, lastTokenEnd, lastTokenLineStart); |
| 1382 | m_lexer->setLastLineNumber(lastLine); |
| 1383 | m_token.m_type = m_lexer->lexExpectIdentifier(&m_token, lexerFlags, strictMode()); |
| 1384 | } |
| 1385 | |
| 1386 | ALWAYS_INLINE void lexCurrentTokenAgainUnderCurrentContext() |
| 1387 | { |
| 1388 | auto savePoint = createSavePoint(); |
| 1389 | restoreSavePoint(savePoint); |
| 1390 | } |
| 1391 | |
| 1392 | ALWAYS_INLINE bool nextTokenIsColon() |
| 1393 | { |
| 1394 | return m_lexer->nextTokenIsColon(); |
| 1395 | } |
| 1396 | |
| 1397 | ALWAYS_INLINE bool consume(JSTokenType expected, unsigned flags = 0) |
| 1398 | { |
| 1399 | bool result = m_token.m_type == expected; |
| 1400 | if (result) |
| 1401 | next(flags); |
| 1402 | return result; |
| 1403 | } |
| 1404 | |
| 1405 | void printUnexpectedTokenText(WTF::PrintStream&); |
| 1406 | ALWAYS_INLINE StringView getToken() |
| 1407 | { |
| 1408 | return m_lexer->getToken(m_token); |
| 1409 | } |
| 1410 | |
| 1411 | ALWAYS_INLINE StringView getToken(const JSToken& token) |
| 1412 | { |
| 1413 | return m_lexer->getToken(token); |
| 1414 | } |
| 1415 | |
| 1416 | ALWAYS_INLINE bool match(JSTokenType expected) |
| 1417 | { |
| 1418 | return m_token.m_type == expected; |
| 1419 | } |
| 1420 | |
| 1421 | ALWAYS_INLINE bool matchContextualKeyword(const Identifier& identifier) |
| 1422 | { |
| 1423 | return m_token.m_type == IDENT && *m_token.m_data.ident == identifier && !m_token.m_data.escaped; |
| 1424 | } |
| 1425 | |
| 1426 | ALWAYS_INLINE bool matchIdentifierOrKeyword() |
| 1427 | { |
| 1428 | return isIdentifierOrKeyword(m_token); |
| 1429 | } |
| 1430 | |
| 1431 | ALWAYS_INLINE unsigned tokenStart() |
| 1432 | { |
| 1433 | return m_token.m_location.startOffset; |
| 1434 | } |
| 1435 | |
| 1436 | ALWAYS_INLINE const JSTextPosition& tokenStartPosition() |
| 1437 | { |
| 1438 | return m_token.m_startPosition; |
| 1439 | } |
| 1440 | |
| 1441 | ALWAYS_INLINE int tokenLine() |
| 1442 | { |
| 1443 | return m_token.m_location.line; |
| 1444 | } |
| 1445 | |
| 1446 | ALWAYS_INLINE int tokenColumn() |
| 1447 | { |
| 1448 | return tokenStart() - tokenLineStart(); |
| 1449 | } |
| 1450 | |
| 1451 | ALWAYS_INLINE const JSTextPosition& tokenEndPosition() |
| 1452 | { |
| 1453 | return m_token.m_endPosition; |
| 1454 | } |
| 1455 | |
| 1456 | ALWAYS_INLINE unsigned tokenLineStart() |
| 1457 | { |
| 1458 | return m_token.m_location.lineStartOffset; |
| 1459 | } |
| 1460 | |
| 1461 | ALWAYS_INLINE const JSTokenLocation& tokenLocation() |
| 1462 | { |
| 1463 | return m_token.m_location; |
| 1464 | } |
| 1465 | |
| 1466 | void setErrorMessage(const String& message) |
| 1467 | { |
| 1468 | ASSERT_WITH_MESSAGE(!message.isEmpty(), "Attempted to set the empty string as an error message. Likely caused by invalid UTF8 used when creating the message." ); |
| 1469 | m_errorMessage = message; |
| 1470 | if (m_errorMessage.isEmpty()) |
| 1471 | m_errorMessage = "Unparseable script"_s ; |
| 1472 | } |
| 1473 | |
| 1474 | NEVER_INLINE void logError(bool); |
| 1475 | template <typename... Args> |
| 1476 | NEVER_INLINE void logError(bool, Args&&...); |
| 1477 | |
| 1478 | NEVER_INLINE void updateErrorWithNameAndMessage(const char* beforeMessage, const String& name, const char* afterMessage) |
| 1479 | { |
| 1480 | m_errorMessage = makeString(beforeMessage, " '" , name, "' " , afterMessage); |
| 1481 | } |
| 1482 | |
| 1483 | NEVER_INLINE void updateErrorMessage(const char* msg) |
| 1484 | { |
| 1485 | ASSERT(msg); |
| 1486 | m_errorMessage = String(msg); |
| 1487 | ASSERT(!m_errorMessage.isNull()); |
| 1488 | } |
| 1489 | |
| 1490 | ALWAYS_INLINE void recordPauseLocation(const JSTextPosition&); |
| 1491 | ALWAYS_INLINE void recordFunctionEntryLocation(const JSTextPosition&); |
| 1492 | ALWAYS_INLINE void recordFunctionLeaveLocation(const JSTextPosition&); |
| 1493 | |
| 1494 | void startLoop() { currentScope()->startLoop(); } |
| 1495 | void endLoop() { currentScope()->endLoop(); } |
| 1496 | void startSwitch() { currentScope()->startSwitch(); } |
| 1497 | void endSwitch() { currentScope()->endSwitch(); } |
| 1498 | void setStrictMode() { currentScope()->setStrictMode(); } |
| 1499 | bool strictMode() { return currentScope()->strictMode(); } |
| 1500 | bool isValidStrictMode() |
| 1501 | { |
| 1502 | int i = m_scopeStack.size() - 1; |
| 1503 | if (!m_scopeStack[i].isValidStrictMode()) |
| 1504 | return false; |
| 1505 | |
| 1506 | // In the case of Generator or Async function bodies, also check the wrapper function, whose name or |
| 1507 | // arguments may be invalid. |
| 1508 | if (UNLIKELY((m_scopeStack[i].isGeneratorBoundary() || m_scopeStack[i].isAsyncFunctionBoundary()) && i)) |
| 1509 | return m_scopeStack[i - 1].isValidStrictMode(); |
| 1510 | return true; |
| 1511 | } |
| 1512 | DeclarationResultMask declareParameter(const Identifier* ident) { return currentScope()->declareParameter(ident); } |
| 1513 | bool declareRestOrNormalParameter(const Identifier&, const Identifier**); |
| 1514 | |
| 1515 | bool breakIsValid() |
| 1516 | { |
| 1517 | ScopeRef current = currentScope(); |
| 1518 | while (!current->breakIsValid()) { |
| 1519 | if (!current.hasContainingScope()) |
| 1520 | return false; |
| 1521 | current = current.containingScope(); |
| 1522 | } |
| 1523 | return true; |
| 1524 | } |
| 1525 | bool continueIsValid() |
| 1526 | { |
| 1527 | ScopeRef current = currentScope(); |
| 1528 | while (!current->continueIsValid()) { |
| 1529 | if (!current.hasContainingScope()) |
| 1530 | return false; |
| 1531 | current = current.containingScope(); |
| 1532 | } |
| 1533 | return true; |
| 1534 | } |
| 1535 | void pushLabel(const Identifier* label, bool isLoop) { currentScope()->pushLabel(label, isLoop); } |
| 1536 | void popLabel(ScopeRef scope) { scope->popLabel(); } |
| 1537 | ScopeLabelInfo* getLabel(const Identifier* label) |
| 1538 | { |
| 1539 | ScopeRef current = currentScope(); |
| 1540 | ScopeLabelInfo* result = 0; |
| 1541 | while (!(result = current->getLabel(label))) { |
| 1542 | if (!current.hasContainingScope()) |
| 1543 | return 0; |
| 1544 | current = current.containingScope(); |
| 1545 | } |
| 1546 | return result; |
| 1547 | } |
| 1548 | |
| 1549 | // http://ecma-international.org/ecma-262/6.0/#sec-identifiers-static-semantics-early-errors |
| 1550 | ALWAYS_INLINE bool isLETMaskedAsIDENT() |
| 1551 | { |
| 1552 | return match(LET) && !strictMode(); |
| 1553 | } |
| 1554 | |
| 1555 | // http://ecma-international.org/ecma-262/6.0/#sec-identifiers-static-semantics-early-errors |
| 1556 | ALWAYS_INLINE bool isYIELDMaskedAsIDENT(bool inGenerator) |
| 1557 | { |
| 1558 | return match(YIELD) && !strictMode() && !inGenerator; |
| 1559 | } |
| 1560 | |
| 1561 | // http://ecma-international.org/ecma-262/6.0/#sec-generator-function-definitions-static-semantics-early-errors |
| 1562 | ALWAYS_INLINE bool matchSpecIdentifier(bool inGenerator) |
| 1563 | { |
| 1564 | return match(IDENT) || isLETMaskedAsIDENT() || isYIELDMaskedAsIDENT(inGenerator) || isSafeContextualKeyword(m_token); |
| 1565 | } |
| 1566 | |
| 1567 | ALWAYS_INLINE bool matchSpecIdentifier() |
| 1568 | { |
| 1569 | return match(IDENT) || isLETMaskedAsIDENT() || isYIELDMaskedAsIDENT(currentScope()->isGenerator()) || isSafeContextualKeyword(m_token); |
| 1570 | } |
| 1571 | |
| 1572 | template <class TreeBuilder> TreeSourceElements parseSourceElements(TreeBuilder&, SourceElementsMode); |
| 1573 | template <class TreeBuilder> TreeSourceElements parseGeneratorFunctionSourceElements(TreeBuilder&, const Identifier& name, SourceElementsMode); |
| 1574 | template <class TreeBuilder> TreeSourceElements parseAsyncFunctionSourceElements(TreeBuilder&, SourceParseMode, bool isArrowFunctionBodyExpression, SourceElementsMode); |
| 1575 | template <class TreeBuilder> TreeSourceElements parseAsyncGeneratorFunctionSourceElements(TreeBuilder&, SourceParseMode, bool isArrowFunctionBodyExpression, SourceElementsMode); |
| 1576 | template <class TreeBuilder> TreeSourceElements parseSingleFunction(TreeBuilder&, Optional<int> functionConstructorParametersEndPosition); |
| 1577 | template <class TreeBuilder> TreeStatement parseStatementListItem(TreeBuilder&, const Identifier*& directive, unsigned* directiveLiteralLength); |
| 1578 | template <class TreeBuilder> TreeStatement parseStatement(TreeBuilder&, const Identifier*& directive, unsigned* directiveLiteralLength = 0); |
| 1579 | enum class ExportType { Exported, NotExported }; |
| 1580 | template <class TreeBuilder> TreeStatement parseClassDeclaration(TreeBuilder&, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard); |
| 1581 | template <class TreeBuilder> TreeStatement parseFunctionDeclaration(TreeBuilder&, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard, Optional<int> functionConstructorParametersEndPosition = WTF::nullopt); |
| 1582 | template <class TreeBuilder> TreeStatement parseFunctionDeclarationStatement(TreeBuilder&, bool isAsync, bool parentAllowsFunctionDeclarationAsStatement); |
| 1583 | template <class TreeBuilder> TreeStatement parseAsyncFunctionDeclaration(TreeBuilder&, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard, Optional<int> functionConstructorParametersEndPosition = WTF::nullopt); |
| 1584 | template <class TreeBuilder> NEVER_INLINE bool maybeParseAsyncFunctionDeclarationStatement(TreeBuilder& context, TreeStatement& result, bool parentAllowsFunctionDeclarationAsStatement); |
| 1585 | template <class TreeBuilder> TreeStatement parseVariableDeclaration(TreeBuilder&, DeclarationType, ExportType = ExportType::NotExported); |
| 1586 | template <class TreeBuilder> TreeStatement parseDoWhileStatement(TreeBuilder&); |
| 1587 | template <class TreeBuilder> TreeStatement parseWhileStatement(TreeBuilder&); |
| 1588 | template <class TreeBuilder> TreeStatement parseForStatement(TreeBuilder&); |
| 1589 | template <class TreeBuilder> TreeStatement parseBreakStatement(TreeBuilder&); |
| 1590 | template <class TreeBuilder> TreeStatement parseContinueStatement(TreeBuilder&); |
| 1591 | template <class TreeBuilder> TreeStatement parseReturnStatement(TreeBuilder&); |
| 1592 | template <class TreeBuilder> TreeStatement parseThrowStatement(TreeBuilder&); |
| 1593 | template <class TreeBuilder> TreeStatement parseWithStatement(TreeBuilder&); |
| 1594 | template <class TreeBuilder> TreeStatement parseSwitchStatement(TreeBuilder&); |
| 1595 | template <class TreeBuilder> TreeClauseList parseSwitchClauses(TreeBuilder&); |
| 1596 | template <class TreeBuilder> TreeClause parseSwitchDefaultClause(TreeBuilder&); |
| 1597 | template <class TreeBuilder> TreeStatement parseTryStatement(TreeBuilder&); |
| 1598 | template <class TreeBuilder> TreeStatement parseDebuggerStatement(TreeBuilder&); |
| 1599 | template <class TreeBuilder> TreeStatement parseExpressionStatement(TreeBuilder&); |
| 1600 | template <class TreeBuilder> TreeStatement parseExpressionOrLabelStatement(TreeBuilder&, bool allowFunctionDeclarationAsStatement); |
| 1601 | template <class TreeBuilder> TreeStatement parseIfStatement(TreeBuilder&); |
| 1602 | template <class TreeBuilder> TreeStatement parseBlockStatement(TreeBuilder&); |
| 1603 | template <class TreeBuilder> TreeExpression parseExpression(TreeBuilder&); |
| 1604 | template <class TreeBuilder> TreeExpression parseAssignmentExpression(TreeBuilder&, ExpressionErrorClassifier&); |
| 1605 | template <class TreeBuilder> TreeExpression parseAssignmentExpression(TreeBuilder&); |
| 1606 | template <class TreeBuilder> TreeExpression parseAssignmentExpressionOrPropagateErrorClass(TreeBuilder&); |
| 1607 | template <class TreeBuilder> TreeExpression parseYieldExpression(TreeBuilder&); |
| 1608 | template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseConditionalExpression(TreeBuilder&); |
| 1609 | template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseBinaryExpression(TreeBuilder&); |
| 1610 | template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseUnaryExpression(TreeBuilder&); |
| 1611 | template <class TreeBuilder> NEVER_INLINE TreeExpression parseAwaitExpression(TreeBuilder&); |
| 1612 | template <class TreeBuilder> TreeExpression parseMemberExpression(TreeBuilder&); |
| 1613 | template <class TreeBuilder> ALWAYS_INLINE TreeExpression parsePrimaryExpression(TreeBuilder&); |
| 1614 | template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseArrayLiteral(TreeBuilder&); |
| 1615 | template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseObjectLiteral(TreeBuilder&); |
| 1616 | template <class TreeBuilder> NEVER_INLINE TreeExpression parseStrictObjectLiteral(TreeBuilder&); |
| 1617 | template <class TreeBuilder> ALWAYS_INLINE TreeClassExpression parseClassExpression(TreeBuilder&); |
| 1618 | template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseFunctionExpression(TreeBuilder&); |
| 1619 | template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseAsyncFunctionExpression(TreeBuilder&); |
| 1620 | template <class TreeBuilder> ALWAYS_INLINE TreeArguments parseArguments(TreeBuilder&); |
| 1621 | template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseArgument(TreeBuilder&, ArgumentType&); |
| 1622 | template <class TreeBuilder> TreeProperty parseProperty(TreeBuilder&, bool strict); |
| 1623 | template <class TreeBuilder> TreeExpression parsePropertyMethod(TreeBuilder& context, const Identifier* methodName, SourceParseMode); |
| 1624 | template <class TreeBuilder> TreeProperty parseGetterSetter(TreeBuilder&, bool strict, PropertyNode::Type, unsigned getterOrSetterStartOffset, ConstructorKind, ClassElementTag); |
| 1625 | template <class TreeBuilder> ALWAYS_INLINE TreeFunctionBody parseFunctionBody(TreeBuilder&, SyntaxChecker&, const JSTokenLocation&, int, int functionKeywordStart, int functionNameStart, int , ConstructorKind, SuperBinding, FunctionBodyType, unsigned, SourceParseMode); |
| 1626 | template <class TreeBuilder> ALWAYS_INLINE bool parseFormalParameters(TreeBuilder&, TreeFormalParameterList, bool isArrowFunction, bool isMethod, unsigned&); |
| 1627 | enum VarDeclarationListContext { ForLoopContext, VarDeclarationContext }; |
| 1628 | template <class TreeBuilder> TreeExpression parseVariableDeclarationList(TreeBuilder&, int& declarations, TreeDestructuringPattern& lastPattern, TreeExpression& lastInitializer, JSTextPosition& identStart, JSTextPosition& initStart, JSTextPosition& initEnd, VarDeclarationListContext, DeclarationType, ExportType, bool& forLoopConstDoesNotHaveInitializer); |
| 1629 | template <class TreeBuilder> TreeSourceElements parseArrowFunctionSingleExpressionBodySourceElements(TreeBuilder&); |
| 1630 | template <class TreeBuilder> TreeExpression parseArrowFunctionExpression(TreeBuilder&, bool isAsync); |
| 1631 | template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern createBindingPattern(TreeBuilder&, DestructuringKind, ExportType, const Identifier&, JSToken, AssignmentContext, const Identifier** duplicateIdentifier); |
| 1632 | template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern createAssignmentElement(TreeBuilder&, TreeExpression&, const JSTextPosition&, const JSTextPosition&); |
| 1633 | template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestBindingOrAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, AssignmentContext bindingContext); |
| 1634 | template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseBindingOrAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, bool* hasDestructuringPattern, AssignmentContext bindingContext, int depth); |
| 1635 | template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestAssignmentElement(TreeBuilder& context); |
| 1636 | template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, bool* hasDestructuringPattern, AssignmentContext bindingContext, int depth); |
| 1637 | template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestElement(TreeBuilder&, DestructuringKind, ExportType, const Identifier** duplicateIdentifier = nullptr, AssignmentContext = AssignmentContext::DeclarationStatement); |
| 1638 | template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseDestructuringPattern(TreeBuilder&, DestructuringKind, ExportType, const Identifier** duplicateIdentifier = nullptr, bool* hasDestructuringPattern = nullptr, AssignmentContext = AssignmentContext::DeclarationStatement, int depth = 0); |
| 1639 | template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern tryParseDestructuringPatternExpression(TreeBuilder&, AssignmentContext); |
| 1640 | template <class TreeBuilder> NEVER_INLINE TreeExpression parseDefaultValueForDestructuringPattern(TreeBuilder&); |
| 1641 | template <class TreeBuilder> TreeSourceElements parseModuleSourceElements(TreeBuilder&, SourceParseMode); |
| 1642 | enum class ImportSpecifierType { NamespaceImport, NamedImport, DefaultImport }; |
| 1643 | template <class TreeBuilder> typename TreeBuilder::ImportSpecifier parseImportClauseItem(TreeBuilder&, ImportSpecifierType); |
| 1644 | template <class TreeBuilder> typename TreeBuilder::ModuleName parseModuleName(TreeBuilder&); |
| 1645 | template <class TreeBuilder> TreeStatement parseImportDeclaration(TreeBuilder&); |
| 1646 | template <class TreeBuilder> typename TreeBuilder::ExportSpecifier parseExportSpecifier(TreeBuilder& context, Vector<std::pair<const Identifier*, const Identifier*>>& maybeExportedLocalNames, bool& hasKeywordForLocalBindings); |
| 1647 | template <class TreeBuilder> TreeStatement parseExportDeclaration(TreeBuilder&); |
| 1648 | |
| 1649 | template <class TreeBuilder> ALWAYS_INLINE TreeExpression createResolveAndUseVariable(TreeBuilder&, const Identifier*, bool isEval, const JSTextPosition&, const JSTokenLocation&); |
| 1650 | |
| 1651 | enum class FunctionDefinitionType { Expression, Declaration, Method }; |
| 1652 | template <class TreeBuilder> NEVER_INLINE bool parseFunctionInfo(TreeBuilder&, FunctionNameRequirements, SourceParseMode, bool nameIsInContainingScope, ConstructorKind, SuperBinding, int functionKeywordStart, ParserFunctionInfo<TreeBuilder>&, FunctionDefinitionType, Optional<int> functionConstructorParametersEndPosition = WTF::nullopt); |
| 1653 | |
| 1654 | ALWAYS_INLINE bool isArrowFunctionParameters(); |
| 1655 | |
| 1656 | template <class TreeBuilder, class FunctionInfoType> NEVER_INLINE typename TreeBuilder::FormalParameterList parseFunctionParameters(TreeBuilder&, SourceParseMode, FunctionInfoType&); |
| 1657 | template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::FormalParameterList createGeneratorParameters(TreeBuilder&, unsigned& parameterCount); |
| 1658 | |
| 1659 | template <class TreeBuilder> NEVER_INLINE TreeClassExpression parseClass(TreeBuilder&, FunctionNameRequirements, ParserClassInfo<TreeBuilder>&); |
| 1660 | |
| 1661 | template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::TemplateString parseTemplateString(TreeBuilder& context, bool isTemplateHead, typename LexerType::RawStringsBuildMode, bool& elementIsTail); |
| 1662 | template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::TemplateLiteral parseTemplateLiteral(TreeBuilder&, typename LexerType::RawStringsBuildMode); |
| 1663 | |
| 1664 | template <class TreeBuilder> ALWAYS_INLINE bool shouldCheckPropertyForUnderscoreProtoDuplicate(TreeBuilder&, const TreeProperty&); |
| 1665 | |
| 1666 | template <class TreeBuilder> NEVER_INLINE const char* metaPropertyName(TreeBuilder&, TreeExpression); |
| 1667 | |
| 1668 | template <class TreeBuilder> ALWAYS_INLINE bool isSimpleAssignmentTarget(TreeBuilder&, TreeExpression); |
| 1669 | |
| 1670 | ALWAYS_INLINE int isBinaryOperator(JSTokenType); |
| 1671 | bool allowAutomaticSemicolon(); |
| 1672 | |
| 1673 | bool autoSemiColon() |
| 1674 | { |
| 1675 | if (m_token.m_type == SEMICOLON) { |
| 1676 | next(); |
| 1677 | return true; |
| 1678 | } |
| 1679 | return allowAutomaticSemicolon(); |
| 1680 | } |
| 1681 | |
| 1682 | bool canRecurse() |
| 1683 | { |
| 1684 | return m_vm->isSafeToRecurse(); |
| 1685 | } |
| 1686 | |
| 1687 | const JSTextPosition& lastTokenEndPosition() const |
| 1688 | { |
| 1689 | return m_lastTokenEndPosition; |
| 1690 | } |
| 1691 | |
| 1692 | bool hasError() const |
| 1693 | { |
| 1694 | return !m_errorMessage.isNull(); |
| 1695 | } |
| 1696 | |
| 1697 | bool isDisallowedIdentifierLet(const JSToken& token) |
| 1698 | { |
| 1699 | return token.m_type == LET && strictMode(); |
| 1700 | } |
| 1701 | |
| 1702 | bool isDisallowedIdentifierAwait(const JSToken& token) |
| 1703 | { |
| 1704 | return token.m_type == AWAIT && (!m_parserState.allowAwait || currentScope()->isAsyncFunctionBoundary() || m_scriptMode == JSParserScriptMode::Module); |
| 1705 | } |
| 1706 | |
| 1707 | bool isDisallowedIdentifierYield(const JSToken& token) |
| 1708 | { |
| 1709 | return token.m_type == YIELD && (strictMode() || currentScope()->isGenerator()); |
| 1710 | } |
| 1711 | |
| 1712 | ALWAYS_INLINE SuperBinding adjustSuperBindingForBaseConstructor(ConstructorKind constructorKind, SuperBinding superBinding, ScopeRef functionScope) |
| 1713 | { |
| 1714 | return adjustSuperBindingForBaseConstructor(constructorKind, superBinding, functionScope->needsSuperBinding(), functionScope->usesEval(), functionScope->innerArrowFunctionFeatures()); |
| 1715 | } |
| 1716 | |
| 1717 | ALWAYS_INLINE SuperBinding adjustSuperBindingForBaseConstructor(ConstructorKind constructorKind, SuperBinding superBinding, bool scopeNeedsSuperBinding, bool currentScopeUsesEval, InnerArrowFunctionCodeFeatures innerArrowFunctionFeatures) |
| 1718 | { |
| 1719 | SuperBinding methodSuperBinding = superBinding; |
| 1720 | |
| 1721 | if (constructorKind == ConstructorKind::Base) { |
| 1722 | bool isSuperUsedInInnerArrowFunction = innerArrowFunctionFeatures & SuperPropertyInnerArrowFunctionFeature; |
| 1723 | methodSuperBinding = (scopeNeedsSuperBinding || isSuperUsedInInnerArrowFunction || currentScopeUsesEval) ? SuperBinding::Needed : SuperBinding::NotNeeded; |
| 1724 | } |
| 1725 | |
| 1726 | return methodSuperBinding; |
| 1727 | } |
| 1728 | |
| 1729 | const char* disallowedIdentifierLetReason() |
| 1730 | { |
| 1731 | ASSERT(strictMode()); |
| 1732 | return "in strict mode" ; |
| 1733 | } |
| 1734 | |
| 1735 | const char* disallowedIdentifierAwaitReason() |
| 1736 | { |
| 1737 | if (!m_parserState.allowAwait || currentScope()->isAsyncFunctionBoundary()) |
| 1738 | return "in an async function" ; |
| 1739 | if (m_scriptMode == JSParserScriptMode::Module) |
| 1740 | return "in a module" ; |
| 1741 | RELEASE_ASSERT_NOT_REACHED(); |
| 1742 | return nullptr; |
| 1743 | } |
| 1744 | |
| 1745 | const char* disallowedIdentifierYieldReason() |
| 1746 | { |
| 1747 | if (strictMode()) |
| 1748 | return "in strict mode" ; |
| 1749 | if (currentScope()->isGenerator()) |
| 1750 | return "in a generator function" ; |
| 1751 | RELEASE_ASSERT_NOT_REACHED(); |
| 1752 | return nullptr; |
| 1753 | } |
| 1754 | |
| 1755 | enum class FunctionParsePhase { Parameters, Body }; |
| 1756 | struct ParserState { |
| 1757 | int assignmentCount { 0 }; |
| 1758 | int nonLHSCount { 0 }; |
| 1759 | int nonTrivialExpressionCount { 0 }; |
| 1760 | FunctionParsePhase functionParsePhase { FunctionParsePhase::Body }; |
| 1761 | const Identifier* lastIdentifier { nullptr }; |
| 1762 | const Identifier* lastFunctionName { nullptr }; |
| 1763 | bool allowAwait { true }; |
| 1764 | }; |
| 1765 | |
| 1766 | // If you're using this directly, you probably should be using |
| 1767 | // createSavePoint() instead. |
| 1768 | ALWAYS_INLINE ParserState internalSaveParserState() |
| 1769 | { |
| 1770 | return m_parserState; |
| 1771 | } |
| 1772 | |
| 1773 | ALWAYS_INLINE void restoreParserState(const ParserState& state) |
| 1774 | { |
| 1775 | m_parserState = state; |
| 1776 | } |
| 1777 | |
| 1778 | struct LexerState { |
| 1779 | int startOffset; |
| 1780 | unsigned oldLineStartOffset; |
| 1781 | unsigned oldLastLineNumber; |
| 1782 | unsigned oldLineNumber; |
| 1783 | bool hasLineTerminatorBeforeToken; |
| 1784 | }; |
| 1785 | |
| 1786 | // If you're using this directly, you probably should be using |
| 1787 | // createSavePoint() instead. |
| 1788 | // i.e, if you parse any kind of AssignmentExpression between |
| 1789 | // saving/restoring, you should definitely not be using this directly. |
| 1790 | ALWAYS_INLINE LexerState internalSaveLexerState() |
| 1791 | { |
| 1792 | LexerState result; |
| 1793 | result.startOffset = m_token.m_location.startOffset; |
| 1794 | result.oldLineStartOffset = m_token.m_location.lineStartOffset; |
| 1795 | result.oldLastLineNumber = m_lexer->lastLineNumber(); |
| 1796 | result.oldLineNumber = m_lexer->lineNumber(); |
| 1797 | result.hasLineTerminatorBeforeToken = m_lexer->hasLineTerminatorBeforeToken(); |
| 1798 | ASSERT(static_cast<unsigned>(result.startOffset) >= result.oldLineStartOffset); |
| 1799 | return result; |
| 1800 | } |
| 1801 | |
| 1802 | ALWAYS_INLINE void restoreLexerState(const LexerState& lexerState) |
| 1803 | { |
| 1804 | // setOffset clears lexer errors. |
| 1805 | m_lexer->setOffset(lexerState.startOffset, lexerState.oldLineStartOffset); |
| 1806 | m_lexer->setLineNumber(lexerState.oldLineNumber); |
| 1807 | m_lexer->setHasLineTerminatorBeforeToken(lexerState.hasLineTerminatorBeforeToken); |
| 1808 | nextWithoutClearingLineTerminator(); |
| 1809 | m_lexer->setLastLineNumber(lexerState.oldLastLineNumber); |
| 1810 | } |
| 1811 | |
| 1812 | struct SavePoint { |
| 1813 | ParserState parserState; |
| 1814 | LexerState lexerState; |
| 1815 | }; |
| 1816 | |
| 1817 | struct SavePointWithError : public SavePoint { |
| 1818 | bool lexerError; |
| 1819 | String lexerErrorMessage; |
| 1820 | String parserErrorMessage; |
| 1821 | }; |
| 1822 | |
| 1823 | ALWAYS_INLINE void internalSaveState(SavePoint& savePoint) |
| 1824 | { |
| 1825 | savePoint.parserState = internalSaveParserState(); |
| 1826 | savePoint.lexerState = internalSaveLexerState(); |
| 1827 | } |
| 1828 | |
| 1829 | ALWAYS_INLINE SavePointWithError createSavePointForError() |
| 1830 | { |
| 1831 | SavePointWithError savePoint; |
| 1832 | internalSaveState(savePoint); |
| 1833 | savePoint.lexerError = m_lexer->sawError(); |
| 1834 | savePoint.lexerErrorMessage = m_lexer->getErrorMessage(); |
| 1835 | savePoint.parserErrorMessage = m_errorMessage; |
| 1836 | return savePoint; |
| 1837 | } |
| 1838 | |
| 1839 | ALWAYS_INLINE SavePoint createSavePoint() |
| 1840 | { |
| 1841 | ASSERT(!hasError()); |
| 1842 | SavePoint savePoint; |
| 1843 | internalSaveState(savePoint); |
| 1844 | return savePoint; |
| 1845 | } |
| 1846 | |
| 1847 | ALWAYS_INLINE void internalRestoreState(const SavePoint& savePoint) |
| 1848 | { |
| 1849 | restoreLexerState(savePoint.lexerState); |
| 1850 | restoreParserState(savePoint.parserState); |
| 1851 | } |
| 1852 | |
| 1853 | ALWAYS_INLINE void restoreSavePointWithError(const SavePointWithError& savePoint) |
| 1854 | { |
| 1855 | internalRestoreState(savePoint); |
| 1856 | m_lexer->setSawError(savePoint.lexerError); |
| 1857 | m_lexer->setErrorMessage(savePoint.lexerErrorMessage); |
| 1858 | m_errorMessage = savePoint.parserErrorMessage; |
| 1859 | } |
| 1860 | |
| 1861 | ALWAYS_INLINE void restoreSavePoint(const SavePoint& savePoint) |
| 1862 | { |
| 1863 | internalRestoreState(savePoint); |
| 1864 | m_errorMessage = String(); |
| 1865 | } |
| 1866 | |
| 1867 | VM* m_vm; |
| 1868 | const SourceCode* m_source; |
| 1869 | ParserArena m_parserArena; |
| 1870 | std::unique_ptr<LexerType> m_lexer; |
| 1871 | FunctionParameters* m_parameters { nullptr }; |
| 1872 | |
| 1873 | ParserState m_parserState; |
| 1874 | |
| 1875 | bool m_hasStackOverflow; |
| 1876 | String m_errorMessage; |
| 1877 | JSToken m_token; |
| 1878 | bool m_allowsIn; |
| 1879 | JSTextPosition m_lastTokenEndPosition; |
| 1880 | int m_statementDepth; |
| 1881 | RefPtr<SourceProviderCache> m_functionCache; |
| 1882 | SourceElements* m_sourceElements; |
| 1883 | bool m_parsingBuiltin; |
| 1884 | JSParserScriptMode m_scriptMode; |
| 1885 | SuperBinding m_superBinding; |
| 1886 | ConstructorKind m_defaultConstructorKind; |
| 1887 | VariableEnvironment m_varDeclarations; |
| 1888 | DeclarationStacks::FunctionStack m_funcDeclarations; |
| 1889 | UniquedStringImplPtrSet m_sloppyModeHoistedFunctions; |
| 1890 | CodeFeatures m_features; |
| 1891 | int m_numConstants; |
| 1892 | ExpressionErrorClassifier* m_expressionErrorClassifier; |
| 1893 | bool m_isEvalContext; |
| 1894 | bool m_immediateParentAllowsFunctionDeclarationInStatement; |
| 1895 | RefPtr<ModuleScopeData> m_moduleScopeData; |
| 1896 | DebuggerParseData* m_debuggerParseData; |
| 1897 | CallOrApplyDepthScope* m_callOrApplyDepthScope { nullptr }; |
| 1898 | bool m_seenTaggedTemplate { false }; |
| 1899 | }; |
| 1900 | |
| 1901 | |
| 1902 | template <typename LexerType> |
| 1903 | template <class ParsedNode> |
| 1904 | std::unique_ptr<ParsedNode> Parser<LexerType>::parse(ParserError& error, const Identifier& calleeName, SourceParseMode parseMode, ParsingContext parsingContext, Optional<int> functionConstructorParametersEndPosition) |
| 1905 | { |
| 1906 | int errLine; |
| 1907 | String errMsg; |
| 1908 | |
| 1909 | if (ParsedNode::scopeIsFunction) |
| 1910 | m_lexer->setIsReparsingFunction(); |
| 1911 | |
| 1912 | m_sourceElements = 0; |
| 1913 | |
| 1914 | errLine = -1; |
| 1915 | errMsg = String(); |
| 1916 | |
| 1917 | JSTokenLocation startLocation(tokenLocation()); |
| 1918 | ASSERT(m_source->startColumn() > OrdinalNumber::beforeFirst()); |
| 1919 | unsigned startColumn = m_source->startColumn().zeroBasedInt(); |
| 1920 | |
| 1921 | String parseError = parseInner(calleeName, parseMode, parsingContext, functionConstructorParametersEndPosition); |
| 1922 | |
| 1923 | int lineNumber = m_lexer->lineNumber(); |
| 1924 | bool lexError = m_lexer->sawError(); |
| 1925 | String lexErrorMessage = lexError ? m_lexer->getErrorMessage() : String(); |
| 1926 | ASSERT(lexErrorMessage.isNull() != lexError); |
| 1927 | m_lexer->clear(); |
| 1928 | |
| 1929 | if (!parseError.isNull() || lexError) { |
| 1930 | errLine = lineNumber; |
| 1931 | errMsg = !lexErrorMessage.isNull() ? lexErrorMessage : parseError; |
| 1932 | m_sourceElements = 0; |
| 1933 | } |
| 1934 | |
| 1935 | std::unique_ptr<ParsedNode> result; |
| 1936 | if (m_sourceElements) { |
| 1937 | JSTokenLocation endLocation; |
| 1938 | endLocation.line = m_lexer->lineNumber(); |
| 1939 | endLocation.lineStartOffset = m_lexer->currentLineStartOffset(); |
| 1940 | endLocation.startOffset = m_lexer->currentOffset(); |
| 1941 | unsigned endColumn = endLocation.startOffset - endLocation.lineStartOffset; |
| 1942 | result = std::make_unique<ParsedNode>(m_parserArena, |
| 1943 | startLocation, |
| 1944 | endLocation, |
| 1945 | startColumn, |
| 1946 | endColumn, |
| 1947 | m_sourceElements, |
| 1948 | m_varDeclarations, |
| 1949 | WTFMove(m_funcDeclarations), |
| 1950 | currentScope()->finalizeLexicalEnvironment(), |
| 1951 | WTFMove(m_sloppyModeHoistedFunctions), |
| 1952 | m_parameters, |
| 1953 | *m_source, |
| 1954 | m_features, |
| 1955 | currentScope()->innerArrowFunctionFeatures(), |
| 1956 | m_numConstants, |
| 1957 | WTFMove(m_moduleScopeData)); |
| 1958 | result->setLoc(m_source->firstLine().oneBasedInt(), m_lexer->lineNumber(), m_lexer->currentOffset(), m_lexer->currentLineStartOffset()); |
| 1959 | result->setEndOffset(m_lexer->currentOffset()); |
| 1960 | |
| 1961 | if (!isFunctionParseMode(parseMode)) { |
| 1962 | m_source->provider()->setSourceURLDirective(m_lexer->sourceURLDirective()); |
| 1963 | m_source->provider()->setSourceMappingURLDirective(m_lexer->sourceMappingURLDirective()); |
| 1964 | } |
| 1965 | } else { |
| 1966 | // We can never see a syntax error when reparsing a function, since we should have |
| 1967 | // reported the error when parsing the containing program or eval code. So if we're |
| 1968 | // parsing a function body node, we assume that what actually happened here is that |
| 1969 | // we ran out of stack while parsing. If we see an error while parsing eval or program |
| 1970 | // code we assume that it was a syntax error since running out of stack is much less |
| 1971 | // likely, and we are currently unable to distinguish between the two cases. |
| 1972 | if (isFunctionMetadataNode(static_cast<ParsedNode*>(0)) || m_hasStackOverflow) |
| 1973 | error = ParserError(ParserError::StackOverflow, ParserError::SyntaxErrorNone, m_token); |
| 1974 | else { |
| 1975 | ParserError::SyntaxErrorType errorType = ParserError::SyntaxErrorIrrecoverable; |
| 1976 | if (m_token.m_type == EOFTOK) |
| 1977 | errorType = ParserError::SyntaxErrorRecoverable; |
| 1978 | else if (m_token.m_type & UnterminatedErrorTokenFlag) { |
| 1979 | // Treat multiline capable unterminated literals as recoverable. |
| 1980 | if (m_token.m_type == UNTERMINATED_MULTILINE_COMMENT_ERRORTOK || m_token.m_type == UNTERMINATED_TEMPLATE_LITERAL_ERRORTOK) |
| 1981 | errorType = ParserError::SyntaxErrorRecoverable; |
| 1982 | else |
| 1983 | errorType = ParserError::SyntaxErrorUnterminatedLiteral; |
| 1984 | } |
| 1985 | |
| 1986 | if (isEvalNode<ParsedNode>()) |
| 1987 | error = ParserError(ParserError::EvalError, errorType, m_token, errMsg, errLine); |
| 1988 | else |
| 1989 | error = ParserError(ParserError::SyntaxError, errorType, m_token, errMsg, errLine); |
| 1990 | } |
| 1991 | } |
| 1992 | |
| 1993 | return result; |
| 1994 | } |
| 1995 | |
| 1996 | template <class ParsedNode> |
| 1997 | std::unique_ptr<ParsedNode> parse( |
| 1998 | VM* vm, const SourceCode& source, |
| 1999 | const Identifier& name, JSParserBuiltinMode builtinMode, |
| 2000 | JSParserStrictMode strictMode, JSParserScriptMode scriptMode, SourceParseMode parseMode, SuperBinding superBinding, |
| 2001 | ParserError& error, JSTextPosition* positionBeforeLastNewline = nullptr, |
| 2002 | ConstructorKind defaultConstructorKind = ConstructorKind::None, |
| 2003 | DerivedContextType derivedContextType = DerivedContextType::None, |
| 2004 | EvalContextType evalContextType = EvalContextType::None, |
| 2005 | DebuggerParseData* debuggerParseData = nullptr) |
| 2006 | { |
| 2007 | ASSERT(!source.provider()->source().isNull()); |
| 2008 | |
| 2009 | MonotonicTime before; |
| 2010 | if (UNLIKELY(Options::reportParseTimes())) |
| 2011 | before = MonotonicTime::now(); |
| 2012 | |
| 2013 | std::unique_ptr<ParsedNode> result; |
| 2014 | if (source.provider()->source().is8Bit()) { |
| 2015 | Parser<Lexer<LChar>> parser(vm, source, builtinMode, strictMode, scriptMode, parseMode, superBinding, defaultConstructorKind, derivedContextType, isEvalNode<ParsedNode>(), evalContextType, debuggerParseData); |
| 2016 | result = parser.parse<ParsedNode>(error, name, parseMode, isEvalNode<ParsedNode>() ? ParsingContext::Eval : ParsingContext::Program); |
| 2017 | if (positionBeforeLastNewline) |
| 2018 | *positionBeforeLastNewline = parser.positionBeforeLastNewline(); |
| 2019 | if (builtinMode == JSParserBuiltinMode::Builtin) { |
| 2020 | if (!result) { |
| 2021 | ASSERT(error.isValid()); |
| 2022 | if (error.type() != ParserError::StackOverflow) |
| 2023 | dataLogLn("Unexpected error compiling builtin: " , error.message()); |
| 2024 | } |
| 2025 | } |
| 2026 | } else { |
| 2027 | ASSERT_WITH_MESSAGE(defaultConstructorKind == ConstructorKind::None, "BuiltinExecutables::createDefaultConstructor should always use a 8-bit string" ); |
| 2028 | Parser<Lexer<UChar>> parser(vm, source, builtinMode, strictMode, scriptMode, parseMode, superBinding, defaultConstructorKind, derivedContextType, isEvalNode<ParsedNode>(), evalContextType, debuggerParseData); |
| 2029 | result = parser.parse<ParsedNode>(error, name, parseMode, isEvalNode<ParsedNode>() ? ParsingContext::Eval : ParsingContext::Program); |
| 2030 | if (positionBeforeLastNewline) |
| 2031 | *positionBeforeLastNewline = parser.positionBeforeLastNewline(); |
| 2032 | } |
| 2033 | |
| 2034 | if (UNLIKELY(Options::reportParseTimes())) { |
| 2035 | MonotonicTime after = MonotonicTime::now(); |
| 2036 | ParseHash hash(source); |
| 2037 | dataLogLn(result ? "Parsed #" : "Failed to parse #" , hash.hashForCall(), "/#" , hash.hashForConstruct(), " in " , (after - before).milliseconds(), " ms." ); |
| 2038 | } |
| 2039 | |
| 2040 | return result; |
| 2041 | } |
| 2042 | |
| 2043 | inline std::unique_ptr<ProgramNode> parseFunctionForFunctionConstructor(VM& vm, const SourceCode& source, ParserError& error, JSTextPosition* positionBeforeLastNewline, Optional<int> functionConstructorParametersEndPosition) |
| 2044 | { |
| 2045 | ASSERT(!source.provider()->source().isNull()); |
| 2046 | |
| 2047 | MonotonicTime before; |
| 2048 | if (UNLIKELY(Options::reportParseTimes())) |
| 2049 | before = MonotonicTime::now(); |
| 2050 | |
| 2051 | Identifier name; |
| 2052 | bool isEvalNode = false; |
| 2053 | std::unique_ptr<ProgramNode> result; |
| 2054 | if (source.provider()->source().is8Bit()) { |
| 2055 | Parser<Lexer<LChar>> parser(&vm, source, JSParserBuiltinMode::NotBuiltin, JSParserStrictMode::NotStrict, JSParserScriptMode::Classic, SourceParseMode::ProgramMode, SuperBinding::NotNeeded, ConstructorKind::None, DerivedContextType::None, isEvalNode, EvalContextType::None, nullptr); |
| 2056 | result = parser.parse<ProgramNode>(error, name, SourceParseMode::ProgramMode, ParsingContext::FunctionConstructor, functionConstructorParametersEndPosition); |
| 2057 | if (positionBeforeLastNewline) |
| 2058 | *positionBeforeLastNewline = parser.positionBeforeLastNewline(); |
| 2059 | } else { |
| 2060 | Parser<Lexer<UChar>> parser(&vm, source, JSParserBuiltinMode::NotBuiltin, JSParserStrictMode::NotStrict, JSParserScriptMode::Classic, SourceParseMode::ProgramMode, SuperBinding::NotNeeded, ConstructorKind::None, DerivedContextType::None, isEvalNode, EvalContextType::None, nullptr); |
| 2061 | result = parser.parse<ProgramNode>(error, name, SourceParseMode::ProgramMode, ParsingContext::FunctionConstructor, functionConstructorParametersEndPosition); |
| 2062 | if (positionBeforeLastNewline) |
| 2063 | *positionBeforeLastNewline = parser.positionBeforeLastNewline(); |
| 2064 | } |
| 2065 | |
| 2066 | if (UNLIKELY(Options::reportParseTimes())) { |
| 2067 | MonotonicTime after = MonotonicTime::now(); |
| 2068 | ParseHash hash(source); |
| 2069 | dataLogLn(result ? "Parsed #" : "Failed to parse #" , hash.hashForCall(), "/#" , hash.hashForConstruct(), " in " , (after - before).milliseconds(), " ms." ); |
| 2070 | } |
| 2071 | |
| 2072 | return result; |
| 2073 | } |
| 2074 | |
| 2075 | |
| 2076 | } // namespace |
| 2077 | |