| 1 | /* |
| 2 | * Copyright (C) 2013-2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "DFGSSAConversionPhase.h" |
| 28 | |
| 29 | #if ENABLE(DFG_JIT) |
| 30 | |
| 31 | #include "DFGBasicBlockInlines.h" |
| 32 | #include "DFGBlockInsertionSet.h" |
| 33 | #include "DFGGraph.h" |
| 34 | #include "DFGInsertionSet.h" |
| 35 | #include "DFGPhase.h" |
| 36 | #include "DFGSSACalculator.h" |
| 37 | #include "DFGVariableAccessDataDump.h" |
| 38 | #include "JSCInlines.h" |
| 39 | |
| 40 | #undef RELEASE_ASSERT |
| 41 | #define RELEASE_ASSERT(assertion) do { \ |
| 42 | if (!(assertion)) { \ |
| 43 | WTFReportAssertionFailure(__FILE__, __LINE__, WTF_PRETTY_FUNCTION, #assertion); \ |
| 44 | CRASH(); \ |
| 45 | } \ |
| 46 | } while (0) |
| 47 | |
| 48 | namespace JSC { namespace DFG { |
| 49 | |
| 50 | class SSAConversionPhase : public Phase { |
| 51 | static const bool verbose = false; |
| 52 | |
| 53 | public: |
| 54 | SSAConversionPhase(Graph& graph) |
| 55 | : Phase(graph, "SSA conversion" ) |
| 56 | , m_insertionSet(graph) |
| 57 | { |
| 58 | } |
| 59 | |
| 60 | bool run() |
| 61 | { |
| 62 | RELEASE_ASSERT(m_graph.m_form == ThreadedCPS); |
| 63 | RELEASE_ASSERT(!m_graph.m_isInSSAConversion); |
| 64 | m_graph.m_isInSSAConversion = true; |
| 65 | |
| 66 | m_graph.clearReplacements(); |
| 67 | m_graph.clearCPSCFGData(); |
| 68 | |
| 69 | HashMap<unsigned, BasicBlock*, WTF::IntHash<unsigned>, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> entrypointIndexToArgumentsBlock; |
| 70 | |
| 71 | m_graph.m_numberOfEntrypoints = m_graph.m_roots.size(); |
| 72 | m_graph.m_argumentFormats.resize(m_graph.m_numberOfEntrypoints); |
| 73 | |
| 74 | for (unsigned entrypointIndex = 0; entrypointIndex < m_graph.m_numberOfEntrypoints; ++entrypointIndex) { |
| 75 | BasicBlock* oldRoot = m_graph.m_roots[entrypointIndex]; |
| 76 | entrypointIndexToArgumentsBlock.add(entrypointIndex, oldRoot); |
| 77 | |
| 78 | NodeOrigin origin = oldRoot->at(0)->origin; |
| 79 | m_insertionSet.insertNode( |
| 80 | 0, SpecNone, InitializeEntrypointArguments, origin, OpInfo(entrypointIndex)); |
| 81 | m_insertionSet.insertNode( |
| 82 | 0, SpecNone, ExitOK, origin); |
| 83 | m_insertionSet.execute(oldRoot); |
| 84 | } |
| 85 | |
| 86 | if (m_graph.m_numberOfEntrypoints > 1) { |
| 87 | BlockInsertionSet blockInsertionSet(m_graph); |
| 88 | BasicBlock* newRoot = blockInsertionSet.insert(0, 1.0f); |
| 89 | |
| 90 | EntrySwitchData* entrySwitchData = m_graph.m_entrySwitchData.add(); |
| 91 | for (unsigned entrypointIndex = 0; entrypointIndex < m_graph.m_numberOfEntrypoints; ++entrypointIndex) { |
| 92 | BasicBlock* oldRoot = m_graph.m_roots[entrypointIndex]; |
| 93 | entrySwitchData->cases.append(oldRoot); |
| 94 | |
| 95 | ASSERT(oldRoot->predecessors.isEmpty()); |
| 96 | oldRoot->predecessors.append(newRoot); |
| 97 | |
| 98 | if (oldRoot->isCatchEntrypoint) { |
| 99 | ASSERT(!!entrypointIndex); |
| 100 | m_graph.m_entrypointIndexToCatchBytecodeOffset.add(entrypointIndex, oldRoot->bytecodeBegin); |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | RELEASE_ASSERT(entrySwitchData->cases[0] == m_graph.block(0)); // We strongly assume the normal call entrypoint is the first item in the list. |
| 105 | |
| 106 | const bool exitOK = false; |
| 107 | NodeOrigin origin { CodeOrigin(0), CodeOrigin(0), exitOK }; |
| 108 | newRoot->appendNode( |
| 109 | m_graph, SpecNone, EntrySwitch, origin, OpInfo(entrySwitchData)); |
| 110 | |
| 111 | m_graph.m_roots.clear(); |
| 112 | m_graph.m_roots.append(newRoot); |
| 113 | |
| 114 | blockInsertionSet.execute(); |
| 115 | } |
| 116 | |
| 117 | SSACalculator calculator(m_graph); |
| 118 | |
| 119 | m_graph.ensureSSADominators(); |
| 120 | |
| 121 | if (verbose) { |
| 122 | dataLog("Graph before SSA transformation:\n" ); |
| 123 | m_graph.dump(); |
| 124 | } |
| 125 | |
| 126 | // Create a SSACalculator::Variable for every root VariableAccessData. |
| 127 | for (VariableAccessData& variable : m_graph.m_variableAccessData) { |
| 128 | if (!variable.isRoot()) |
| 129 | continue; |
| 130 | |
| 131 | SSACalculator::Variable* ssaVariable = calculator.newVariable(); |
| 132 | ASSERT(ssaVariable->index() == m_variableForSSAIndex.size()); |
| 133 | m_variableForSSAIndex.append(&variable); |
| 134 | m_ssaVariableForVariable.add(&variable, ssaVariable); |
| 135 | } |
| 136 | |
| 137 | // Find all SetLocals and create Defs for them. We handle SetArgumentDefinitely by creating a |
| 138 | // GetLocal, and recording the flush format. |
| 139 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
| 140 | BasicBlock* block = m_graph.block(blockIndex); |
| 141 | if (!block) |
| 142 | continue; |
| 143 | |
| 144 | // Must process the block in forward direction because we want to see the last |
| 145 | // assignment for every local. |
| 146 | for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { |
| 147 | Node* node = block->at(nodeIndex); |
| 148 | if (node->op() != SetLocal && node->op() != SetArgumentDefinitely) |
| 149 | continue; |
| 150 | |
| 151 | VariableAccessData* variable = node->variableAccessData(); |
| 152 | |
| 153 | Node* childNode; |
| 154 | if (node->op() == SetLocal) |
| 155 | childNode = node->child1().node(); |
| 156 | else { |
| 157 | ASSERT(node->op() == SetArgumentDefinitely); |
| 158 | childNode = m_insertionSet.insertNode( |
| 159 | nodeIndex, node->variableAccessData()->prediction(), |
| 160 | GetStack, node->origin, |
| 161 | OpInfo(m_graph.m_stackAccessData.add(variable->local(), variable->flushFormat()))); |
| 162 | if (!ASSERT_DISABLED) |
| 163 | m_argumentGetters.add(childNode); |
| 164 | m_argumentMapping.add(node, childNode); |
| 165 | } |
| 166 | |
| 167 | calculator.newDef( |
| 168 | m_ssaVariableForVariable.get(variable), block, childNode); |
| 169 | } |
| 170 | |
| 171 | m_insertionSet.execute(block); |
| 172 | } |
| 173 | |
| 174 | // Decide where Phis are to be inserted. This creates the Phi's but doesn't insert them |
| 175 | // yet. We will later know where to insert based on where SSACalculator tells us to. |
| 176 | calculator.computePhis( |
| 177 | [&] (SSACalculator::Variable* ssaVariable, BasicBlock* block) -> Node* { |
| 178 | VariableAccessData* variable = m_variableForSSAIndex[ssaVariable->index()]; |
| 179 | |
| 180 | // Prune by liveness. This doesn't buy us much other than compile times. |
| 181 | Node* headNode = block->variablesAtHead.operand(variable->local()); |
| 182 | if (!headNode) |
| 183 | return nullptr; |
| 184 | |
| 185 | // There is the possibiltiy of "rebirths". The SSA calculator will already prune |
| 186 | // rebirths for the same VariableAccessData. But it will not be able to prune |
| 187 | // rebirths that arose from the same local variable number but a different |
| 188 | // VariableAccessData. We do that pruning here. |
| 189 | // |
| 190 | // Here's an example of a rebirth that this would catch: |
| 191 | // |
| 192 | // var x; |
| 193 | // if (foo) { |
| 194 | // if (bar) { |
| 195 | // x = 42; |
| 196 | // } else { |
| 197 | // x = 43; |
| 198 | // } |
| 199 | // print(x); |
| 200 | // x = 44; |
| 201 | // } else { |
| 202 | // x = 45; |
| 203 | // } |
| 204 | // print(x); // Without this check, we'd have a Phi for x = 42|43 here. |
| 205 | // |
| 206 | // FIXME: Consider feeding local variable numbers, not VariableAccessData*'s, as |
| 207 | // the "variables" for SSACalculator. That would allow us to eliminate this |
| 208 | // special case. |
| 209 | // https://bugs.webkit.org/show_bug.cgi?id=136641 |
| 210 | if (headNode->variableAccessData() != variable) |
| 211 | return nullptr; |
| 212 | |
| 213 | Node* phiNode = m_graph.addNode( |
| 214 | variable->prediction(), Phi, block->at(0)->origin.withInvalidExit()); |
| 215 | FlushFormat format = variable->flushFormat(); |
| 216 | NodeFlags result = resultFor(format); |
| 217 | phiNode->mergeFlags(result); |
| 218 | return phiNode; |
| 219 | }); |
| 220 | |
| 221 | if (verbose) { |
| 222 | dataLog("Computed Phis, about to transform the graph.\n" ); |
| 223 | dataLog("\n" ); |
| 224 | dataLog("Graph:\n" ); |
| 225 | m_graph.dump(); |
| 226 | dataLog("\n" ); |
| 227 | dataLog("Mappings:\n" ); |
| 228 | for (unsigned i = 0; i < m_variableForSSAIndex.size(); ++i) |
| 229 | dataLog(" " , i, ": " , VariableAccessDataDump(m_graph, m_variableForSSAIndex[i]), "\n" ); |
| 230 | dataLog("\n" ); |
| 231 | dataLog("SSA calculator: " , calculator, "\n" ); |
| 232 | } |
| 233 | |
| 234 | // Do the bulk of the SSA conversion. For each block, this tracks the operand->Node |
| 235 | // mapping based on a combination of what the SSACalculator tells us, and us walking over |
| 236 | // the block in forward order. We use our own data structure, valueForOperand, for |
| 237 | // determining the local mapping, but we rely on SSACalculator for the non-local mapping. |
| 238 | // |
| 239 | // This does three things at once: |
| 240 | // |
| 241 | // - Inserts the Phis in all of the places where they need to go. We've already created |
| 242 | // them and they are accounted for in the SSACalculator's data structures, but we |
| 243 | // haven't inserted them yet, mostly because we want to insert all of a block's Phis in |
| 244 | // one go to amortize the cost of node insertion. |
| 245 | // |
| 246 | // - Create and insert Upsilons. |
| 247 | // |
| 248 | // - Convert all of the preexisting SSA nodes (other than the old CPS Phi nodes) into SSA |
| 249 | // form by replacing as follows: |
| 250 | // |
| 251 | // - MovHint has KillLocal prepended to it. |
| 252 | // |
| 253 | // - GetLocal die and get replaced with references to the node specified by |
| 254 | // valueForOperand. |
| 255 | // |
| 256 | // - SetLocal turns into PutStack if it's flushed, or turns into a Check otherwise. |
| 257 | // |
| 258 | // - Flush is removed. |
| 259 | // |
| 260 | // - PhantomLocal becomes Phantom, and its child is whatever is specified by |
| 261 | // valueForOperand. |
| 262 | // |
| 263 | // - SetArgumentDefinitely is removed. Note that GetStack nodes have already been inserted. |
| 264 | // |
| 265 | // - SetArgumentMaybe is removed. It should not have any data flow uses. |
| 266 | Operands<Node*> valueForOperand(OperandsLike, m_graph.block(0)->variablesAtHead); |
| 267 | for (BasicBlock* block : m_graph.blocksInPreOrder()) { |
| 268 | valueForOperand.clear(); |
| 269 | |
| 270 | // CPS will claim that the root block has all arguments live. But we have already done |
| 271 | // the first step of SSA conversion: argument locals are no longer live at head; |
| 272 | // instead we have GetStack nodes for extracting the values of arguments. So, we |
| 273 | // skip the at-head available value calculation for the root block. |
| 274 | if (block != m_graph.block(0)) { |
| 275 | for (size_t i = valueForOperand.size(); i--;) { |
| 276 | Node* nodeAtHead = block->variablesAtHead[i]; |
| 277 | if (!nodeAtHead) |
| 278 | continue; |
| 279 | |
| 280 | VariableAccessData* variable = nodeAtHead->variableAccessData(); |
| 281 | |
| 282 | if (verbose) |
| 283 | dataLog("Considering live variable " , VariableAccessDataDump(m_graph, variable), " at head of block " , *block, "\n" ); |
| 284 | |
| 285 | SSACalculator::Variable* ssaVariable = m_ssaVariableForVariable.get(variable); |
| 286 | SSACalculator::Def* def = calculator.reachingDefAtHead(block, ssaVariable); |
| 287 | if (!def) { |
| 288 | // If we are required to insert a Phi, then we won't have a reaching def |
| 289 | // at head. |
| 290 | continue; |
| 291 | } |
| 292 | |
| 293 | Node* node = def->value(); |
| 294 | if (node->replacement()) { |
| 295 | // This will occur when a SetLocal had a GetLocal as its source. The |
| 296 | // GetLocal would get replaced with an actual SSA value by the time we get |
| 297 | // here. Note that the SSA value with which the GetLocal got replaced |
| 298 | // would not in turn have a replacement. |
| 299 | node = node->replacement(); |
| 300 | ASSERT(!node->replacement()); |
| 301 | } |
| 302 | if (verbose) |
| 303 | dataLog("Mapping: " , VirtualRegister(valueForOperand.operandForIndex(i)), " -> " , node, "\n" ); |
| 304 | valueForOperand[i] = node; |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | // Insert Phis by asking the calculator what phis there are in this block. Also update |
| 309 | // valueForOperand with those Phis. For Phis associated with variables that are not |
| 310 | // flushed, we also insert a MovHint. |
| 311 | size_t phiInsertionPoint = 0; |
| 312 | for (SSACalculator::Def* phiDef : calculator.phisForBlock(block)) { |
| 313 | VariableAccessData* variable = m_variableForSSAIndex[phiDef->variable()->index()]; |
| 314 | |
| 315 | m_insertionSet.insert(phiInsertionPoint, phiDef->value()); |
| 316 | valueForOperand.operand(variable->local()) = phiDef->value(); |
| 317 | |
| 318 | m_insertionSet.insertNode( |
| 319 | phiInsertionPoint, SpecNone, MovHint, block->at(0)->origin.withInvalidExit(), |
| 320 | OpInfo(variable->local().offset()), phiDef->value()->defaultEdge()); |
| 321 | } |
| 322 | |
| 323 | if (block->at(0)->origin.exitOK) |
| 324 | m_insertionSet.insertNode(phiInsertionPoint, SpecNone, ExitOK, block->at(0)->origin); |
| 325 | |
| 326 | for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { |
| 327 | Node* node = block->at(nodeIndex); |
| 328 | |
| 329 | if (verbose) { |
| 330 | dataLog("Processing node " , node, ":\n" ); |
| 331 | m_graph.dump(WTF::dataFile(), " " , node); |
| 332 | } |
| 333 | |
| 334 | m_graph.performSubstitution(node); |
| 335 | |
| 336 | switch (node->op()) { |
| 337 | case MovHint: { |
| 338 | m_insertionSet.insertNode( |
| 339 | nodeIndex, SpecNone, KillStack, node->origin, |
| 340 | OpInfo(node->unlinkedLocal().offset())); |
| 341 | node->origin.exitOK = false; // KillStack clobbers exit. |
| 342 | break; |
| 343 | } |
| 344 | |
| 345 | case SetLocal: { |
| 346 | VariableAccessData* variable = node->variableAccessData(); |
| 347 | Node* child = node->child1().node(); |
| 348 | |
| 349 | if (!!(node->flags() & NodeIsFlushed)) { |
| 350 | node->convertToPutStack( |
| 351 | m_graph.m_stackAccessData.add( |
| 352 | variable->local(), variable->flushFormat())); |
| 353 | } else |
| 354 | node->remove(m_graph); |
| 355 | |
| 356 | if (verbose) |
| 357 | dataLog("Mapping: " , variable->local(), " -> " , child, "\n" ); |
| 358 | valueForOperand.operand(variable->local()) = child; |
| 359 | break; |
| 360 | } |
| 361 | |
| 362 | case GetStack: { |
| 363 | ASSERT(m_argumentGetters.contains(node)); |
| 364 | valueForOperand.operand(node->stackAccessData()->local) = node; |
| 365 | break; |
| 366 | } |
| 367 | |
| 368 | case GetLocal: { |
| 369 | VariableAccessData* variable = node->variableAccessData(); |
| 370 | node->children.reset(); |
| 371 | |
| 372 | node->remove(m_graph); |
| 373 | if (verbose) |
| 374 | dataLog("Replacing node " , node, " with " , valueForOperand.operand(variable->local()), "\n" ); |
| 375 | node->setReplacement(valueForOperand.operand(variable->local())); |
| 376 | break; |
| 377 | } |
| 378 | |
| 379 | case Flush: { |
| 380 | node->children.reset(); |
| 381 | node->remove(m_graph); |
| 382 | break; |
| 383 | } |
| 384 | |
| 385 | case PhantomLocal: { |
| 386 | ASSERT(node->child1().useKind() == UntypedUse); |
| 387 | VariableAccessData* variable = node->variableAccessData(); |
| 388 | node->child1() = valueForOperand.operand(variable->local())->defaultEdge(); |
| 389 | node->remove(m_graph); |
| 390 | break; |
| 391 | } |
| 392 | |
| 393 | case SetArgumentDefinitely: { |
| 394 | node->remove(m_graph); |
| 395 | break; |
| 396 | } |
| 397 | |
| 398 | case SetArgumentMaybe: { |
| 399 | node->remove(m_graph); |
| 400 | break; |
| 401 | } |
| 402 | |
| 403 | default: |
| 404 | break; |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | // We want to insert Upsilons just before the end of the block. On the surface this |
| 409 | // seems dangerous because the Upsilon will have a checking UseKind. But, we will not |
| 410 | // actually be performing the check at the point of the Upsilon; the check will |
| 411 | // already have been performed at the point where the original SetLocal was. |
| 412 | NodeAndIndex terminal = block->findTerminal(); |
| 413 | size_t upsilonInsertionPoint = terminal.index; |
| 414 | NodeOrigin upsilonOrigin = terminal.node->origin; |
| 415 | for (unsigned successorIndex = block->numSuccessors(); successorIndex--;) { |
| 416 | BasicBlock* successorBlock = block->successor(successorIndex); |
| 417 | for (SSACalculator::Def* phiDef : calculator.phisForBlock(successorBlock)) { |
| 418 | Node* phiNode = phiDef->value(); |
| 419 | SSACalculator::Variable* ssaVariable = phiDef->variable(); |
| 420 | VariableAccessData* variable = m_variableForSSAIndex[ssaVariable->index()]; |
| 421 | FlushFormat format = variable->flushFormat(); |
| 422 | |
| 423 | // We can use an unchecked use kind because the SetLocal was turned into a Check. |
| 424 | // We have to use an unchecked use because at least sometimes, the end of the block |
| 425 | // is not exitOK. |
| 426 | UseKind useKind = uncheckedUseKindFor(format); |
| 427 | |
| 428 | m_insertionSet.insertNode( |
| 429 | upsilonInsertionPoint, SpecNone, Upsilon, upsilonOrigin, |
| 430 | OpInfo(phiNode), Edge( |
| 431 | valueForOperand.operand(variable->local()), |
| 432 | useKind)); |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | m_insertionSet.execute(block); |
| 437 | } |
| 438 | |
| 439 | // Free all CPS phis and reset variables vectors. |
| 440 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
| 441 | BasicBlock* block = m_graph.block(blockIndex); |
| 442 | if (!block) |
| 443 | continue; |
| 444 | for (unsigned phiIndex = block->phis.size(); phiIndex--;) |
| 445 | m_graph.deleteNode(block->phis[phiIndex]); |
| 446 | block->phis.clear(); |
| 447 | block->variablesAtHead.clear(); |
| 448 | block->variablesAtTail.clear(); |
| 449 | block->valuesAtHead.clear(); |
| 450 | block->valuesAtHead.clear(); |
| 451 | block->ssa = std::make_unique<BasicBlock::SSAData>(block); |
| 452 | } |
| 453 | |
| 454 | for (auto& pair : entrypointIndexToArgumentsBlock) { |
| 455 | unsigned entrypointIndex = pair.key; |
| 456 | BasicBlock* oldRoot = pair.value; |
| 457 | ArgumentsVector& arguments = m_graph.m_rootToArguments.find(oldRoot)->value; |
| 458 | Vector<FlushFormat> argumentFormats; |
| 459 | argumentFormats.reserveInitialCapacity(arguments.size()); |
| 460 | for (unsigned i = 0; i < arguments.size(); ++i) { |
| 461 | Node* node = m_argumentMapping.get(arguments[i]); |
| 462 | RELEASE_ASSERT(node); |
| 463 | argumentFormats.uncheckedAppend(node->stackAccessData()->format); |
| 464 | } |
| 465 | m_graph.m_argumentFormats[entrypointIndex] = WTFMove(argumentFormats); |
| 466 | } |
| 467 | |
| 468 | m_graph.m_rootToArguments.clear(); |
| 469 | |
| 470 | RELEASE_ASSERT(m_graph.m_isInSSAConversion); |
| 471 | m_graph.m_isInSSAConversion = false; |
| 472 | |
| 473 | m_graph.m_form = SSA; |
| 474 | |
| 475 | if (verbose) { |
| 476 | dataLog("Graph after SSA transformation:\n" ); |
| 477 | m_graph.dump(); |
| 478 | } |
| 479 | |
| 480 | return true; |
| 481 | } |
| 482 | |
| 483 | private: |
| 484 | InsertionSet m_insertionSet; |
| 485 | HashMap<VariableAccessData*, SSACalculator::Variable*> m_ssaVariableForVariable; |
| 486 | HashMap<Node*, Node*> m_argumentMapping; |
| 487 | HashSet<Node*> m_argumentGetters; |
| 488 | Vector<VariableAccessData*> ; |
| 489 | }; |
| 490 | |
| 491 | bool performSSAConversion(Graph& graph) |
| 492 | { |
| 493 | bool result = runPhase<SSAConversionPhase>(graph); |
| 494 | return result; |
| 495 | } |
| 496 | |
| 497 | } } // namespace JSC::DFG |
| 498 | |
| 499 | #endif // ENABLE(DFG_JIT) |
| 500 | |
| 501 | |