| 1 | /* |
| 2 | * Copyright (C) 2015-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "DFGObjectAllocationSinkingPhase.h" |
| 28 | |
| 29 | #if ENABLE(DFG_JIT) |
| 30 | |
| 31 | #include "DFGBlockMapInlines.h" |
| 32 | #include "DFGClobbersExitState.h" |
| 33 | #include "DFGCombinedLiveness.h" |
| 34 | #include "DFGGraph.h" |
| 35 | #include "DFGInsertionSet.h" |
| 36 | #include "DFGLazyNode.h" |
| 37 | #include "DFGLivenessAnalysisPhase.h" |
| 38 | #include "DFGOSRAvailabilityAnalysisPhase.h" |
| 39 | #include "DFGPhase.h" |
| 40 | #include "DFGPromotedHeapLocation.h" |
| 41 | #include "DFGSSACalculator.h" |
| 42 | #include "DFGValidate.h" |
| 43 | #include "JSCInlines.h" |
| 44 | #include <wtf/StdList.h> |
| 45 | |
| 46 | namespace JSC { namespace DFG { |
| 47 | |
| 48 | namespace { |
| 49 | |
| 50 | namespace DFGObjectAllocationSinkingPhaseInternal { |
| 51 | static const bool verbose = false; |
| 52 | } |
| 53 | |
| 54 | // In order to sink object cycles, we use a points-to analysis coupled |
| 55 | // with an escape analysis. This analysis is actually similar to an |
| 56 | // abstract interpreter focused on local allocations and ignoring |
| 57 | // everything else. |
| 58 | // |
| 59 | // We represent the local heap using two mappings: |
| 60 | // |
| 61 | // - A set of the local allocations present in the function, where |
| 62 | // each of those have a further mapping from |
| 63 | // PromotedLocationDescriptor to local allocations they must point |
| 64 | // to. |
| 65 | // |
| 66 | // - A "pointer" mapping from nodes to local allocations, if they must |
| 67 | // be equal to said local allocation and are currently live. This |
| 68 | // can be because the node is the actual node that created the |
| 69 | // allocation, or any other node that must currently point to it - |
| 70 | // we don't make a difference. |
| 71 | // |
| 72 | // The following graph is a motivation for why we separate allocations |
| 73 | // from pointers: |
| 74 | // |
| 75 | // Block #0 |
| 76 | // 0: NewObject({}) |
| 77 | // 1: NewObject({}) |
| 78 | // -: PutByOffset(@0, @1, x) |
| 79 | // -: PutStructure(@0, {x:0}) |
| 80 | // 2: GetByOffset(@0, x) |
| 81 | // -: Jump(#1) |
| 82 | // |
| 83 | // Block #1 |
| 84 | // -: Return(@2) |
| 85 | // |
| 86 | // Here, we need to remember in block #1 that @2 points to a local |
| 87 | // allocation with appropriate fields and structures information |
| 88 | // (because we should be able to place a materialization on top of |
| 89 | // block #1 here), even though @1 is dead. We *could* just keep @1 |
| 90 | // artificially alive here, but there is no real reason to do it: |
| 91 | // after all, by the end of block #0, @1 and @2 should be completely |
| 92 | // interchangeable, and there is no reason for us to artificially make |
| 93 | // @1 more important. |
| 94 | // |
| 95 | // An important point to consider to understand this separation is |
| 96 | // that we should think of the local heap as follow: we have a |
| 97 | // bunch of nodes that are pointers to "allocations" that live |
| 98 | // someplace on the heap, and those allocations can have pointers in |
| 99 | // between themselves as well. We shouldn't care about whatever |
| 100 | // names we give to the allocations ; what matters when |
| 101 | // comparing/merging two heaps is the isomorphism/comparison between |
| 102 | // the allocation graphs as seen by the nodes. |
| 103 | // |
| 104 | // For instance, in the following graph: |
| 105 | // |
| 106 | // Block #0 |
| 107 | // 0: NewObject({}) |
| 108 | // -: Branch(#1, #2) |
| 109 | // |
| 110 | // Block #1 |
| 111 | // 1: NewObject({}) |
| 112 | // -: PutByOffset(@0, @1, x) |
| 113 | // -: PutStructure(@0, {x:0}) |
| 114 | // -: Jump(#3) |
| 115 | // |
| 116 | // Block #2 |
| 117 | // 2: NewObject({}) |
| 118 | // -: PutByOffset(@2, undefined, x) |
| 119 | // -: PutStructure(@2, {x:0}) |
| 120 | // -: PutByOffset(@0, @2, x) |
| 121 | // -: PutStructure(@0, {x:0}) |
| 122 | // -: Jump(#3) |
| 123 | // |
| 124 | // Block #3 |
| 125 | // -: Return(@0) |
| 126 | // |
| 127 | // we should think of the heaps at tail of blocks #1 and #2 as being |
| 128 | // exactly the same, even though one has @0.x pointing to @1 and the |
| 129 | // other has @0.x pointing to @2, because in essence this should not |
| 130 | // be different from the graph where we hoisted @1 and @2 into a |
| 131 | // single allocation in block #0. We currently will not handle this |
| 132 | // case, because we merge allocations based on the node they are |
| 133 | // coming from, but this is only a technicality for the sake of |
| 134 | // simplicity that shouldn't hide the deeper idea outlined here. |
| 135 | |
| 136 | class Allocation { |
| 137 | public: |
| 138 | // We use Escaped as a special allocation kind because when we |
| 139 | // decide to sink an allocation, we still need to keep track of it |
| 140 | // once it is escaped if it still has pointers to it in order to |
| 141 | // replace any use of those pointers by the corresponding |
| 142 | // materialization |
| 143 | enum class Kind { Escaped, Object, Activation, Function, GeneratorFunction, AsyncFunction, AsyncGeneratorFunction, RegExpObject }; |
| 144 | |
| 145 | using Fields = HashMap<PromotedLocationDescriptor, Node*>; |
| 146 | |
| 147 | explicit Allocation(Node* identifier = nullptr, Kind kind = Kind::Escaped) |
| 148 | : m_identifier(identifier) |
| 149 | , m_kind(kind) |
| 150 | { |
| 151 | } |
| 152 | |
| 153 | |
| 154 | const Fields& fields() const |
| 155 | { |
| 156 | return m_fields; |
| 157 | } |
| 158 | |
| 159 | Fields& fields() |
| 160 | { |
| 161 | return m_fields; |
| 162 | } |
| 163 | |
| 164 | Node* get(PromotedLocationDescriptor descriptor) |
| 165 | { |
| 166 | return m_fields.get(descriptor); |
| 167 | } |
| 168 | |
| 169 | Allocation& set(PromotedLocationDescriptor descriptor, Node* value) |
| 170 | { |
| 171 | // Pointing to anything else than an unescaped local |
| 172 | // allocation is represented by simply not having the |
| 173 | // field |
| 174 | if (value) |
| 175 | m_fields.set(descriptor, value); |
| 176 | else |
| 177 | m_fields.remove(descriptor); |
| 178 | return *this; |
| 179 | } |
| 180 | |
| 181 | void remove(PromotedLocationDescriptor descriptor) |
| 182 | { |
| 183 | set(descriptor, nullptr); |
| 184 | } |
| 185 | |
| 186 | bool hasStructures() const |
| 187 | { |
| 188 | switch (kind()) { |
| 189 | case Kind::Object: |
| 190 | return true; |
| 191 | |
| 192 | default: |
| 193 | return false; |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | Allocation& setStructures(const RegisteredStructureSet& structures) |
| 198 | { |
| 199 | ASSERT(hasStructures() && !structures.isEmpty()); |
| 200 | m_structures = structures; |
| 201 | return *this; |
| 202 | } |
| 203 | |
| 204 | Allocation& mergeStructures(const RegisteredStructureSet& structures) |
| 205 | { |
| 206 | ASSERT(hasStructures() || structures.isEmpty()); |
| 207 | m_structures.merge(structures); |
| 208 | return *this; |
| 209 | } |
| 210 | |
| 211 | Allocation& filterStructures(const RegisteredStructureSet& structures) |
| 212 | { |
| 213 | ASSERT(hasStructures()); |
| 214 | m_structures.filter(structures); |
| 215 | RELEASE_ASSERT(!m_structures.isEmpty()); |
| 216 | return *this; |
| 217 | } |
| 218 | |
| 219 | const RegisteredStructureSet& structures() const |
| 220 | { |
| 221 | return m_structures; |
| 222 | } |
| 223 | |
| 224 | Node* identifier() const { return m_identifier; } |
| 225 | |
| 226 | Kind kind() const { return m_kind; } |
| 227 | |
| 228 | bool isEscapedAllocation() const |
| 229 | { |
| 230 | return kind() == Kind::Escaped; |
| 231 | } |
| 232 | |
| 233 | bool isObjectAllocation() const |
| 234 | { |
| 235 | return m_kind == Kind::Object; |
| 236 | } |
| 237 | |
| 238 | bool isActivationAllocation() const |
| 239 | { |
| 240 | return m_kind == Kind::Activation; |
| 241 | } |
| 242 | |
| 243 | bool isFunctionAllocation() const |
| 244 | { |
| 245 | return m_kind == Kind::Function || m_kind == Kind::GeneratorFunction || m_kind == Kind::AsyncFunction; |
| 246 | } |
| 247 | |
| 248 | bool isRegExpObjectAllocation() const |
| 249 | { |
| 250 | return m_kind == Kind::RegExpObject; |
| 251 | } |
| 252 | |
| 253 | bool operator==(const Allocation& other) const |
| 254 | { |
| 255 | return m_identifier == other.m_identifier |
| 256 | && m_kind == other.m_kind |
| 257 | && m_fields == other.m_fields |
| 258 | && m_structures == other.m_structures; |
| 259 | } |
| 260 | |
| 261 | bool operator!=(const Allocation& other) const |
| 262 | { |
| 263 | return !(*this == other); |
| 264 | } |
| 265 | |
| 266 | void dump(PrintStream& out) const |
| 267 | { |
| 268 | dumpInContext(out, nullptr); |
| 269 | } |
| 270 | |
| 271 | void dumpInContext(PrintStream& out, DumpContext* context) const |
| 272 | { |
| 273 | switch (m_kind) { |
| 274 | case Kind::Escaped: |
| 275 | out.print("Escaped" ); |
| 276 | break; |
| 277 | |
| 278 | case Kind::Object: |
| 279 | out.print("Object" ); |
| 280 | break; |
| 281 | |
| 282 | case Kind::Function: |
| 283 | out.print("Function" ); |
| 284 | break; |
| 285 | |
| 286 | case Kind::GeneratorFunction: |
| 287 | out.print("GeneratorFunction" ); |
| 288 | break; |
| 289 | |
| 290 | case Kind::AsyncFunction: |
| 291 | out.print("AsyncFunction" ); |
| 292 | break; |
| 293 | |
| 294 | case Kind::AsyncGeneratorFunction: |
| 295 | out.print("AsyncGeneratorFunction" ); |
| 296 | break; |
| 297 | |
| 298 | case Kind::Activation: |
| 299 | out.print("Activation" ); |
| 300 | break; |
| 301 | |
| 302 | case Kind::RegExpObject: |
| 303 | out.print("RegExpObject" ); |
| 304 | break; |
| 305 | } |
| 306 | out.print("Allocation(" ); |
| 307 | if (!m_structures.isEmpty()) |
| 308 | out.print(inContext(m_structures.toStructureSet(), context)); |
| 309 | if (!m_fields.isEmpty()) { |
| 310 | if (!m_structures.isEmpty()) |
| 311 | out.print(", " ); |
| 312 | out.print(mapDump(m_fields, " => #" , ", " )); |
| 313 | } |
| 314 | out.print(")" ); |
| 315 | } |
| 316 | |
| 317 | private: |
| 318 | Node* m_identifier; // This is the actual node that created the allocation |
| 319 | Kind m_kind; |
| 320 | Fields m_fields; |
| 321 | RegisteredStructureSet m_structures; |
| 322 | }; |
| 323 | |
| 324 | class LocalHeap { |
| 325 | public: |
| 326 | Allocation& newAllocation(Node* node, Allocation::Kind kind) |
| 327 | { |
| 328 | ASSERT(!m_pointers.contains(node) && !isAllocation(node)); |
| 329 | m_pointers.add(node, node); |
| 330 | return m_allocations.set(node, Allocation(node, kind)).iterator->value; |
| 331 | } |
| 332 | |
| 333 | bool isAllocation(Node* identifier) const |
| 334 | { |
| 335 | return m_allocations.contains(identifier); |
| 336 | } |
| 337 | |
| 338 | // Note that this is fundamentally different from |
| 339 | // onlyLocalAllocation() below. getAllocation() takes as argument |
| 340 | // a node-as-identifier, that is, an allocation node. This |
| 341 | // allocation node doesn't have to be alive; it may only be |
| 342 | // pointed to by other nodes or allocation fields. |
| 343 | // For instance, in the following graph: |
| 344 | // |
| 345 | // Block #0 |
| 346 | // 0: NewObject({}) |
| 347 | // 1: NewObject({}) |
| 348 | // -: PutByOffset(@0, @1, x) |
| 349 | // -: PutStructure(@0, {x:0}) |
| 350 | // 2: GetByOffset(@0, x) |
| 351 | // -: Jump(#1) |
| 352 | // |
| 353 | // Block #1 |
| 354 | // -: Return(@2) |
| 355 | // |
| 356 | // At head of block #1, the only reachable allocation is #@1, |
| 357 | // which can be reached through node @2. Thus, getAllocation(#@1) |
| 358 | // contains the appropriate metadata for this allocation, but |
| 359 | // onlyLocalAllocation(@1) is null, as @1 is no longer a pointer |
| 360 | // to #@1 (since it is dead). Conversely, onlyLocalAllocation(@2) |
| 361 | // is the same as getAllocation(#@1), while getAllocation(#@2) |
| 362 | // does not make sense since @2 is not an allocation node. |
| 363 | // |
| 364 | // This is meant to be used when the node is already known to be |
| 365 | // an identifier (i.e. an allocation) - probably because it was |
| 366 | // found as value of a field or pointer in the current heap, or |
| 367 | // was the result of a call to follow(). In any other cases (such |
| 368 | // as when doing anything while traversing the graph), the |
| 369 | // appropriate function to call is probably onlyLocalAllocation. |
| 370 | Allocation& getAllocation(Node* identifier) |
| 371 | { |
| 372 | auto iter = m_allocations.find(identifier); |
| 373 | ASSERT(iter != m_allocations.end()); |
| 374 | return iter->value; |
| 375 | } |
| 376 | |
| 377 | void newPointer(Node* node, Node* identifier) |
| 378 | { |
| 379 | ASSERT(!m_allocations.contains(node) && !m_pointers.contains(node)); |
| 380 | ASSERT(isAllocation(identifier)); |
| 381 | m_pointers.add(node, identifier); |
| 382 | } |
| 383 | |
| 384 | // follow solves the points-to problem. Given a live node, which |
| 385 | // may be either an allocation itself or a heap read (e.g. a |
| 386 | // GetByOffset node), it returns the corresponding allocation |
| 387 | // node, if there is one. If the argument node is neither an |
| 388 | // allocation or a heap read, or may point to different nodes, |
| 389 | // nullptr will be returned. Note that a node that points to |
| 390 | // different nodes can never point to an unescaped local |
| 391 | // allocation. |
| 392 | Node* follow(Node* node) const |
| 393 | { |
| 394 | auto iter = m_pointers.find(node); |
| 395 | ASSERT(iter == m_pointers.end() || m_allocations.contains(iter->value)); |
| 396 | return iter == m_pointers.end() ? nullptr : iter->value; |
| 397 | } |
| 398 | |
| 399 | Node* follow(PromotedHeapLocation location) const |
| 400 | { |
| 401 | const Allocation& base = m_allocations.find(location.base())->value; |
| 402 | auto iter = base.fields().find(location.descriptor()); |
| 403 | |
| 404 | if (iter == base.fields().end()) |
| 405 | return nullptr; |
| 406 | |
| 407 | return iter->value; |
| 408 | } |
| 409 | |
| 410 | // onlyLocalAllocation find the corresponding allocation metadata |
| 411 | // for any live node. onlyLocalAllocation(node) is essentially |
| 412 | // getAllocation(follow(node)), with appropriate null handling. |
| 413 | Allocation* onlyLocalAllocation(Node* node) |
| 414 | { |
| 415 | Node* identifier = follow(node); |
| 416 | if (!identifier) |
| 417 | return nullptr; |
| 418 | |
| 419 | return &getAllocation(identifier); |
| 420 | } |
| 421 | |
| 422 | Allocation* onlyLocalAllocation(PromotedHeapLocation location) |
| 423 | { |
| 424 | Node* identifier = follow(location); |
| 425 | if (!identifier) |
| 426 | return nullptr; |
| 427 | |
| 428 | return &getAllocation(identifier); |
| 429 | } |
| 430 | |
| 431 | // This allows us to store the escapees only when necessary. If |
| 432 | // set, the current escapees can be retrieved at any time using |
| 433 | // takeEscapees(), which will clear the cached set of escapees; |
| 434 | // otherwise the heap won't remember escaping allocations. |
| 435 | void setWantEscapees() |
| 436 | { |
| 437 | m_wantEscapees = true; |
| 438 | } |
| 439 | |
| 440 | HashMap<Node*, Allocation> takeEscapees() |
| 441 | { |
| 442 | return WTFMove(m_escapees); |
| 443 | } |
| 444 | |
| 445 | void escape(Node* node) |
| 446 | { |
| 447 | Node* identifier = follow(node); |
| 448 | if (!identifier) |
| 449 | return; |
| 450 | |
| 451 | escapeAllocation(identifier); |
| 452 | } |
| 453 | |
| 454 | void merge(const LocalHeap& other) |
| 455 | { |
| 456 | assertIsValid(); |
| 457 | other.assertIsValid(); |
| 458 | ASSERT(!m_wantEscapees); |
| 459 | |
| 460 | if (!reached()) { |
| 461 | ASSERT(other.reached()); |
| 462 | *this = other; |
| 463 | return; |
| 464 | } |
| 465 | |
| 466 | NodeSet toEscape; |
| 467 | |
| 468 | for (auto& allocationEntry : other.m_allocations) |
| 469 | m_allocations.add(allocationEntry.key, allocationEntry.value); |
| 470 | for (auto& allocationEntry : m_allocations) { |
| 471 | auto allocationIter = other.m_allocations.find(allocationEntry.key); |
| 472 | |
| 473 | // If we have it and they don't, it died for them but we |
| 474 | // are keeping it alive from another field somewhere. |
| 475 | // There is nothing to do - we will be escaped |
| 476 | // automatically when we handle that other field. |
| 477 | // This will also happen for allocation that we have and |
| 478 | // they don't, and all of those will get pruned. |
| 479 | if (allocationIter == other.m_allocations.end()) |
| 480 | continue; |
| 481 | |
| 482 | if (allocationEntry.value.kind() != allocationIter->value.kind()) { |
| 483 | toEscape.addVoid(allocationEntry.key); |
| 484 | for (const auto& fieldEntry : allocationIter->value.fields()) |
| 485 | toEscape.addVoid(fieldEntry.value); |
| 486 | } else { |
| 487 | mergePointerSets(allocationEntry.value.fields(), allocationIter->value.fields(), toEscape); |
| 488 | allocationEntry.value.mergeStructures(allocationIter->value.structures()); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | mergePointerSets(m_pointers, other.m_pointers, toEscape); |
| 493 | |
| 494 | for (Node* identifier : toEscape) |
| 495 | escapeAllocation(identifier); |
| 496 | |
| 497 | if (!ASSERT_DISABLED) { |
| 498 | for (const auto& entry : m_allocations) |
| 499 | ASSERT_UNUSED(entry, entry.value.isEscapedAllocation() || other.m_allocations.contains(entry.key)); |
| 500 | } |
| 501 | |
| 502 | // If there is no remaining pointer to an allocation, we can |
| 503 | // remove it. This should only happen for escaped allocations, |
| 504 | // because we only merge liveness-pruned heaps in the first |
| 505 | // place. |
| 506 | prune(); |
| 507 | |
| 508 | assertIsValid(); |
| 509 | } |
| 510 | |
| 511 | void pruneByLiveness(const NodeSet& live) |
| 512 | { |
| 513 | m_pointers.removeIf( |
| 514 | [&] (const auto& entry) { |
| 515 | return !live.contains(entry.key); |
| 516 | }); |
| 517 | prune(); |
| 518 | } |
| 519 | |
| 520 | void assertIsValid() const |
| 521 | { |
| 522 | if (ASSERT_DISABLED) |
| 523 | return; |
| 524 | |
| 525 | // Pointers should point to an actual allocation |
| 526 | for (const auto& entry : m_pointers) { |
| 527 | ASSERT_UNUSED(entry, entry.value); |
| 528 | ASSERT(m_allocations.contains(entry.value)); |
| 529 | } |
| 530 | |
| 531 | for (const auto& allocationEntry : m_allocations) { |
| 532 | // Fields should point to an actual allocation |
| 533 | for (const auto& fieldEntry : allocationEntry.value.fields()) { |
| 534 | ASSERT_UNUSED(fieldEntry, fieldEntry.value); |
| 535 | ASSERT(m_allocations.contains(fieldEntry.value)); |
| 536 | } |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | bool operator==(const LocalHeap& other) const |
| 541 | { |
| 542 | assertIsValid(); |
| 543 | other.assertIsValid(); |
| 544 | return m_allocations == other.m_allocations |
| 545 | && m_pointers == other.m_pointers; |
| 546 | } |
| 547 | |
| 548 | bool operator!=(const LocalHeap& other) const |
| 549 | { |
| 550 | return !(*this == other); |
| 551 | } |
| 552 | |
| 553 | const HashMap<Node*, Allocation>& allocations() const |
| 554 | { |
| 555 | return m_allocations; |
| 556 | } |
| 557 | |
| 558 | const HashMap<Node*, Node*>& pointers() const |
| 559 | { |
| 560 | return m_pointers; |
| 561 | } |
| 562 | |
| 563 | void dump(PrintStream& out) const |
| 564 | { |
| 565 | out.print(" Allocations:\n" ); |
| 566 | for (const auto& entry : m_allocations) |
| 567 | out.print(" #" , entry.key, ": " , entry.value, "\n" ); |
| 568 | out.print(" Pointers:\n" ); |
| 569 | for (const auto& entry : m_pointers) |
| 570 | out.print(" " , entry.key, " => #" , entry.value, "\n" ); |
| 571 | } |
| 572 | |
| 573 | bool reached() const |
| 574 | { |
| 575 | return m_reached; |
| 576 | } |
| 577 | |
| 578 | void setReached() |
| 579 | { |
| 580 | m_reached = true; |
| 581 | } |
| 582 | |
| 583 | private: |
| 584 | // When we merge two heaps, we escape all fields of allocations, |
| 585 | // unless they point to the same thing in both heaps. |
| 586 | // The reason for this is that it allows us not to do extra work |
| 587 | // for diamond graphs where we would otherwise have to check |
| 588 | // whether we have a single definition or not, which would be |
| 589 | // cumbersome. |
| 590 | // |
| 591 | // Note that we should try to unify nodes even when they are not |
| 592 | // from the same allocation; for instance we should be able to |
| 593 | // completely eliminate all allocations from the following graph: |
| 594 | // |
| 595 | // Block #0 |
| 596 | // 0: NewObject({}) |
| 597 | // -: Branch(#1, #2) |
| 598 | // |
| 599 | // Block #1 |
| 600 | // 1: NewObject({}) |
| 601 | // -: PutByOffset(@1, "left", val) |
| 602 | // -: PutStructure(@1, {val:0}) |
| 603 | // -: PutByOffset(@0, @1, x) |
| 604 | // -: PutStructure(@0, {x:0}) |
| 605 | // -: Jump(#3) |
| 606 | // |
| 607 | // Block #2 |
| 608 | // 2: NewObject({}) |
| 609 | // -: PutByOffset(@2, "right", val) |
| 610 | // -: PutStructure(@2, {val:0}) |
| 611 | // -: PutByOffset(@0, @2, x) |
| 612 | // -: PutStructure(@0, {x:0}) |
| 613 | // -: Jump(#3) |
| 614 | // |
| 615 | // Block #3: |
| 616 | // 3: GetByOffset(@0, x) |
| 617 | // 4: GetByOffset(@3, val) |
| 618 | // -: Return(@4) |
| 619 | template<typename Key> |
| 620 | static void mergePointerSets(HashMap<Key, Node*>& my, const HashMap<Key, Node*>& their, NodeSet& toEscape) |
| 621 | { |
| 622 | auto escape = [&] (Node* identifier) { |
| 623 | toEscape.addVoid(identifier); |
| 624 | }; |
| 625 | |
| 626 | for (const auto& entry : their) { |
| 627 | if (!my.contains(entry.key)) |
| 628 | escape(entry.value); |
| 629 | } |
| 630 | my.removeIf([&] (const auto& entry) { |
| 631 | auto iter = their.find(entry.key); |
| 632 | if (iter == their.end()) { |
| 633 | escape(entry.value); |
| 634 | return true; |
| 635 | } |
| 636 | if (iter->value != entry.value) { |
| 637 | escape(entry.value); |
| 638 | escape(iter->value); |
| 639 | return true; |
| 640 | } |
| 641 | return false; |
| 642 | }); |
| 643 | } |
| 644 | |
| 645 | void escapeAllocation(Node* identifier) |
| 646 | { |
| 647 | Allocation& allocation = getAllocation(identifier); |
| 648 | if (allocation.isEscapedAllocation()) |
| 649 | return; |
| 650 | |
| 651 | Allocation unescaped = WTFMove(allocation); |
| 652 | allocation = Allocation(unescaped.identifier(), Allocation::Kind::Escaped); |
| 653 | |
| 654 | for (const auto& entry : unescaped.fields()) |
| 655 | escapeAllocation(entry.value); |
| 656 | |
| 657 | if (m_wantEscapees) |
| 658 | m_escapees.add(unescaped.identifier(), WTFMove(unescaped)); |
| 659 | } |
| 660 | |
| 661 | void prune() |
| 662 | { |
| 663 | NodeSet reachable; |
| 664 | for (const auto& entry : m_pointers) |
| 665 | reachable.addVoid(entry.value); |
| 666 | |
| 667 | // Repeatedly mark as reachable allocations in fields of other |
| 668 | // reachable allocations |
| 669 | { |
| 670 | Vector<Node*> worklist; |
| 671 | worklist.appendRange(reachable.begin(), reachable.end()); |
| 672 | |
| 673 | while (!worklist.isEmpty()) { |
| 674 | Node* identifier = worklist.takeLast(); |
| 675 | Allocation& allocation = m_allocations.find(identifier)->value; |
| 676 | for (const auto& entry : allocation.fields()) { |
| 677 | if (reachable.add(entry.value).isNewEntry) |
| 678 | worklist.append(entry.value); |
| 679 | } |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | // Remove unreachable allocations |
| 684 | m_allocations.removeIf( |
| 685 | [&] (const auto& entry) { |
| 686 | return !reachable.contains(entry.key); |
| 687 | }); |
| 688 | } |
| 689 | |
| 690 | bool m_reached = false; |
| 691 | HashMap<Node*, Node*> m_pointers; |
| 692 | HashMap<Node*, Allocation> m_allocations; |
| 693 | |
| 694 | bool m_wantEscapees = false; |
| 695 | HashMap<Node*, Allocation> m_escapees; |
| 696 | }; |
| 697 | |
| 698 | class ObjectAllocationSinkingPhase : public Phase { |
| 699 | public: |
| 700 | ObjectAllocationSinkingPhase(Graph& graph) |
| 701 | : Phase(graph, "object allocation elimination" ) |
| 702 | , m_pointerSSA(graph) |
| 703 | , m_allocationSSA(graph) |
| 704 | , m_insertionSet(graph) |
| 705 | { |
| 706 | } |
| 707 | |
| 708 | bool run() |
| 709 | { |
| 710 | ASSERT(m_graph.m_form == SSA); |
| 711 | ASSERT(m_graph.m_fixpointState == FixpointNotConverged); |
| 712 | |
| 713 | if (!performSinking()) |
| 714 | return false; |
| 715 | |
| 716 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) { |
| 717 | dataLog("Graph after elimination:\n" ); |
| 718 | m_graph.dump(); |
| 719 | } |
| 720 | |
| 721 | return true; |
| 722 | } |
| 723 | |
| 724 | private: |
| 725 | bool performSinking() |
| 726 | { |
| 727 | m_graph.computeRefCounts(); |
| 728 | m_graph.initializeNodeOwners(); |
| 729 | m_graph.ensureSSADominators(); |
| 730 | performLivenessAnalysis(m_graph); |
| 731 | performOSRAvailabilityAnalysis(m_graph); |
| 732 | m_combinedLiveness = CombinedLiveness(m_graph); |
| 733 | |
| 734 | CString graphBeforeSinking; |
| 735 | if (Options::verboseValidationFailure() && Options::validateGraphAtEachPhase()) { |
| 736 | StringPrintStream out; |
| 737 | m_graph.dump(out); |
| 738 | graphBeforeSinking = out.toCString(); |
| 739 | } |
| 740 | |
| 741 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) { |
| 742 | dataLog("Graph before elimination:\n" ); |
| 743 | m_graph.dump(); |
| 744 | } |
| 745 | |
| 746 | performAnalysis(); |
| 747 | |
| 748 | if (!determineSinkCandidates()) |
| 749 | return false; |
| 750 | |
| 751 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) { |
| 752 | for (BasicBlock* block : m_graph.blocksInNaturalOrder()) { |
| 753 | dataLog("Heap at head of " , *block, ": \n" , m_heapAtHead[block]); |
| 754 | dataLog("Heap at tail of " , *block, ": \n" , m_heapAtTail[block]); |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | promoteLocalHeap(); |
| 759 | removeICStatusFilters(); |
| 760 | |
| 761 | if (Options::validateGraphAtEachPhase()) |
| 762 | DFG::validate(m_graph, DumpGraph, graphBeforeSinking); |
| 763 | return true; |
| 764 | } |
| 765 | |
| 766 | void performAnalysis() |
| 767 | { |
| 768 | m_heapAtHead = BlockMap<LocalHeap>(m_graph); |
| 769 | m_heapAtTail = BlockMap<LocalHeap>(m_graph); |
| 770 | |
| 771 | bool changed; |
| 772 | do { |
| 773 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) |
| 774 | dataLog("Doing iteration of escape analysis.\n" ); |
| 775 | changed = false; |
| 776 | |
| 777 | for (BasicBlock* block : m_graph.blocksInPreOrder()) { |
| 778 | m_heapAtHead[block].setReached(); |
| 779 | m_heap = m_heapAtHead[block]; |
| 780 | |
| 781 | for (Node* node : *block) { |
| 782 | handleNode( |
| 783 | node, |
| 784 | [] (PromotedHeapLocation, LazyNode) { }, |
| 785 | [&] (PromotedHeapLocation) -> Node* { |
| 786 | return nullptr; |
| 787 | }); |
| 788 | } |
| 789 | |
| 790 | if (m_heap == m_heapAtTail[block]) |
| 791 | continue; |
| 792 | |
| 793 | m_heapAtTail[block] = m_heap; |
| 794 | changed = true; |
| 795 | |
| 796 | m_heap.assertIsValid(); |
| 797 | |
| 798 | // We keep only pointers that are live, and only |
| 799 | // allocations that are either live, pointed to by a |
| 800 | // live pointer, or (recursively) stored in a field of |
| 801 | // a live allocation. |
| 802 | // |
| 803 | // This means we can accidentaly leak non-dominating |
| 804 | // nodes into the successor. However, due to the |
| 805 | // non-dominance property, we are guaranteed that the |
| 806 | // successor has at least one predecessor that is not |
| 807 | // dominated either: this means any reference to a |
| 808 | // non-dominating allocation in the successor will |
| 809 | // trigger an escape and get pruned during the merge. |
| 810 | m_heap.pruneByLiveness(m_combinedLiveness.liveAtTail[block]); |
| 811 | |
| 812 | for (BasicBlock* successorBlock : block->successors()) |
| 813 | m_heapAtHead[successorBlock].merge(m_heap); |
| 814 | } |
| 815 | } while (changed); |
| 816 | } |
| 817 | |
| 818 | template<typename WriteFunctor, typename ResolveFunctor> |
| 819 | void handleNode( |
| 820 | Node* node, |
| 821 | const WriteFunctor& heapWrite, |
| 822 | const ResolveFunctor& heapResolve) |
| 823 | { |
| 824 | m_heap.assertIsValid(); |
| 825 | ASSERT(m_heap.takeEscapees().isEmpty()); |
| 826 | |
| 827 | Allocation* target = nullptr; |
| 828 | HashMap<PromotedLocationDescriptor, LazyNode> writes; |
| 829 | PromotedLocationDescriptor exactRead; |
| 830 | |
| 831 | switch (node->op()) { |
| 832 | case NewObject: |
| 833 | target = &m_heap.newAllocation(node, Allocation::Kind::Object); |
| 834 | target->setStructures(node->structure()); |
| 835 | writes.add( |
| 836 | StructurePLoc, LazyNode(m_graph.freeze(node->structure().get()))); |
| 837 | break; |
| 838 | |
| 839 | case NewFunction: |
| 840 | case NewGeneratorFunction: |
| 841 | case NewAsyncGeneratorFunction: |
| 842 | case NewAsyncFunction: { |
| 843 | if (isStillValid(node->castOperand<FunctionExecutable*>()->singletonFunction())) { |
| 844 | m_heap.escape(node->child1().node()); |
| 845 | break; |
| 846 | } |
| 847 | |
| 848 | if (node->op() == NewGeneratorFunction) |
| 849 | target = &m_heap.newAllocation(node, Allocation::Kind::GeneratorFunction); |
| 850 | else if (node->op() == NewAsyncFunction) |
| 851 | target = &m_heap.newAllocation(node, Allocation::Kind::AsyncFunction); |
| 852 | else if (node->op() == NewAsyncGeneratorFunction) |
| 853 | target = &m_heap.newAllocation(node, Allocation::Kind::AsyncGeneratorFunction); |
| 854 | else |
| 855 | target = &m_heap.newAllocation(node, Allocation::Kind::Function); |
| 856 | |
| 857 | writes.add(FunctionExecutablePLoc, LazyNode(node->cellOperand())); |
| 858 | writes.add(FunctionActivationPLoc, LazyNode(node->child1().node())); |
| 859 | break; |
| 860 | } |
| 861 | |
| 862 | case NewRegexp: { |
| 863 | target = &m_heap.newAllocation(node, Allocation::Kind::RegExpObject); |
| 864 | |
| 865 | writes.add(RegExpObjectRegExpPLoc, LazyNode(node->cellOperand())); |
| 866 | writes.add(RegExpObjectLastIndexPLoc, LazyNode(node->child1().node())); |
| 867 | break; |
| 868 | } |
| 869 | |
| 870 | case CreateActivation: { |
| 871 | if (isStillValid(node->castOperand<SymbolTable*>()->singletonScope())) { |
| 872 | m_heap.escape(node->child1().node()); |
| 873 | break; |
| 874 | } |
| 875 | target = &m_heap.newAllocation(node, Allocation::Kind::Activation); |
| 876 | writes.add(ActivationSymbolTablePLoc, LazyNode(node->cellOperand())); |
| 877 | writes.add(ActivationScopePLoc, LazyNode(node->child1().node())); |
| 878 | { |
| 879 | SymbolTable* symbolTable = node->castOperand<SymbolTable*>(); |
| 880 | LazyNode initialValue(m_graph.freeze(node->initializationValueForActivation())); |
| 881 | for (unsigned offset = 0; offset < symbolTable->scopeSize(); ++offset) { |
| 882 | writes.add( |
| 883 | PromotedLocationDescriptor(ClosureVarPLoc, offset), |
| 884 | initialValue); |
| 885 | } |
| 886 | } |
| 887 | break; |
| 888 | } |
| 889 | |
| 890 | case PutStructure: |
| 891 | target = m_heap.onlyLocalAllocation(node->child1().node()); |
| 892 | if (target && target->isObjectAllocation()) { |
| 893 | writes.add(StructurePLoc, LazyNode(m_graph.freeze(JSValue(node->transition()->next.get())))); |
| 894 | target->setStructures(node->transition()->next); |
| 895 | } else |
| 896 | m_heap.escape(node->child1().node()); |
| 897 | break; |
| 898 | |
| 899 | case CheckStructureOrEmpty: |
| 900 | case CheckStructure: { |
| 901 | Allocation* allocation = m_heap.onlyLocalAllocation(node->child1().node()); |
| 902 | if (allocation && allocation->isObjectAllocation()) { |
| 903 | RegisteredStructureSet filteredStructures = allocation->structures(); |
| 904 | filteredStructures.filter(node->structureSet()); |
| 905 | if (filteredStructures.isEmpty()) { |
| 906 | // FIXME: Write a test for this: |
| 907 | // https://bugs.webkit.org/show_bug.cgi?id=174322 |
| 908 | m_heap.escape(node->child1().node()); |
| 909 | break; |
| 910 | } |
| 911 | allocation->setStructures(filteredStructures); |
| 912 | if (Node* value = heapResolve(PromotedHeapLocation(allocation->identifier(), StructurePLoc))) |
| 913 | node->convertToCheckStructureImmediate(value); |
| 914 | } else |
| 915 | m_heap.escape(node->child1().node()); |
| 916 | break; |
| 917 | } |
| 918 | |
| 919 | case GetByOffset: |
| 920 | case GetGetterSetterByOffset: |
| 921 | target = m_heap.onlyLocalAllocation(node->child2().node()); |
| 922 | if (target && target->isObjectAllocation()) { |
| 923 | unsigned identifierNumber = node->storageAccessData().identifierNumber; |
| 924 | exactRead = PromotedLocationDescriptor(NamedPropertyPLoc, identifierNumber); |
| 925 | } else { |
| 926 | m_heap.escape(node->child1().node()); |
| 927 | m_heap.escape(node->child2().node()); |
| 928 | } |
| 929 | break; |
| 930 | |
| 931 | case MultiGetByOffset: { |
| 932 | Allocation* allocation = m_heap.onlyLocalAllocation(node->child1().node()); |
| 933 | if (allocation && allocation->isObjectAllocation()) { |
| 934 | MultiGetByOffsetData& data = node->multiGetByOffsetData(); |
| 935 | RegisteredStructureSet validStructures; |
| 936 | bool hasInvalidStructures = false; |
| 937 | for (const auto& multiGetByOffsetCase : data.cases) { |
| 938 | if (!allocation->structures().overlaps(multiGetByOffsetCase.set())) |
| 939 | continue; |
| 940 | |
| 941 | switch (multiGetByOffsetCase.method().kind()) { |
| 942 | case GetByOffsetMethod::LoadFromPrototype: // We need to escape those |
| 943 | case GetByOffsetMethod::Constant: // We don't really have a way of expressing this |
| 944 | hasInvalidStructures = true; |
| 945 | break; |
| 946 | |
| 947 | case GetByOffsetMethod::Load: // We're good |
| 948 | validStructures.merge(multiGetByOffsetCase.set()); |
| 949 | break; |
| 950 | |
| 951 | default: |
| 952 | RELEASE_ASSERT_NOT_REACHED(); |
| 953 | } |
| 954 | } |
| 955 | if (hasInvalidStructures || validStructures.isEmpty()) { |
| 956 | m_heap.escape(node->child1().node()); |
| 957 | break; |
| 958 | } |
| 959 | unsigned identifierNumber = data.identifierNumber; |
| 960 | PromotedHeapLocation location(NamedPropertyPLoc, allocation->identifier(), identifierNumber); |
| 961 | if (Node* value = heapResolve(location)) { |
| 962 | if (allocation->structures().isSubsetOf(validStructures)) |
| 963 | node->replaceWithWithoutChecks(value); |
| 964 | else { |
| 965 | Node* structure = heapResolve(PromotedHeapLocation(allocation->identifier(), StructurePLoc)); |
| 966 | ASSERT(structure); |
| 967 | allocation->filterStructures(validStructures); |
| 968 | node->convertToCheckStructure(m_graph.addStructureSet(allocation->structures())); |
| 969 | node->convertToCheckStructureImmediate(structure); |
| 970 | node->setReplacement(value); |
| 971 | } |
| 972 | } else if (!allocation->structures().isSubsetOf(validStructures)) { |
| 973 | // Even though we don't need the result here, we still need |
| 974 | // to make the call to tell our caller that we could need |
| 975 | // the StructurePLoc. |
| 976 | // The reason for this is that when we decide not to sink a |
| 977 | // node, we will still lower any read to its fields before |
| 978 | // it escapes (which are usually reads across a function |
| 979 | // call that DFGClobberize can't handle) - but we only do |
| 980 | // this for PromotedHeapLocations that we have seen read |
| 981 | // during the analysis! |
| 982 | heapResolve(PromotedHeapLocation(allocation->identifier(), StructurePLoc)); |
| 983 | allocation->filterStructures(validStructures); |
| 984 | } |
| 985 | Node* identifier = allocation->get(location.descriptor()); |
| 986 | if (identifier) |
| 987 | m_heap.newPointer(node, identifier); |
| 988 | } else |
| 989 | m_heap.escape(node->child1().node()); |
| 990 | break; |
| 991 | } |
| 992 | |
| 993 | case PutByOffset: |
| 994 | target = m_heap.onlyLocalAllocation(node->child2().node()); |
| 995 | if (target && target->isObjectAllocation()) { |
| 996 | unsigned identifierNumber = node->storageAccessData().identifierNumber; |
| 997 | writes.add( |
| 998 | PromotedLocationDescriptor(NamedPropertyPLoc, identifierNumber), |
| 999 | LazyNode(node->child3().node())); |
| 1000 | } else { |
| 1001 | m_heap.escape(node->child1().node()); |
| 1002 | m_heap.escape(node->child2().node()); |
| 1003 | m_heap.escape(node->child3().node()); |
| 1004 | } |
| 1005 | break; |
| 1006 | |
| 1007 | case GetClosureVar: |
| 1008 | target = m_heap.onlyLocalAllocation(node->child1().node()); |
| 1009 | if (target && target->isActivationAllocation()) { |
| 1010 | exactRead = |
| 1011 | PromotedLocationDescriptor(ClosureVarPLoc, node->scopeOffset().offset()); |
| 1012 | } else |
| 1013 | m_heap.escape(node->child1().node()); |
| 1014 | break; |
| 1015 | |
| 1016 | case PutClosureVar: |
| 1017 | target = m_heap.onlyLocalAllocation(node->child1().node()); |
| 1018 | if (target && target->isActivationAllocation()) { |
| 1019 | writes.add( |
| 1020 | PromotedLocationDescriptor(ClosureVarPLoc, node->scopeOffset().offset()), |
| 1021 | LazyNode(node->child2().node())); |
| 1022 | } else { |
| 1023 | m_heap.escape(node->child1().node()); |
| 1024 | m_heap.escape(node->child2().node()); |
| 1025 | } |
| 1026 | break; |
| 1027 | |
| 1028 | case SkipScope: |
| 1029 | target = m_heap.onlyLocalAllocation(node->child1().node()); |
| 1030 | if (target && target->isActivationAllocation()) |
| 1031 | exactRead = ActivationScopePLoc; |
| 1032 | else |
| 1033 | m_heap.escape(node->child1().node()); |
| 1034 | break; |
| 1035 | |
| 1036 | case GetExecutable: |
| 1037 | target = m_heap.onlyLocalAllocation(node->child1().node()); |
| 1038 | if (target && target->isFunctionAllocation()) |
| 1039 | exactRead = FunctionExecutablePLoc; |
| 1040 | else |
| 1041 | m_heap.escape(node->child1().node()); |
| 1042 | break; |
| 1043 | |
| 1044 | case GetScope: |
| 1045 | target = m_heap.onlyLocalAllocation(node->child1().node()); |
| 1046 | if (target && target->isFunctionAllocation()) |
| 1047 | exactRead = FunctionActivationPLoc; |
| 1048 | else |
| 1049 | m_heap.escape(node->child1().node()); |
| 1050 | break; |
| 1051 | |
| 1052 | case GetRegExpObjectLastIndex: |
| 1053 | target = m_heap.onlyLocalAllocation(node->child1().node()); |
| 1054 | if (target && target->isRegExpObjectAllocation()) |
| 1055 | exactRead = RegExpObjectLastIndexPLoc; |
| 1056 | else |
| 1057 | m_heap.escape(node->child1().node()); |
| 1058 | break; |
| 1059 | |
| 1060 | case SetRegExpObjectLastIndex: |
| 1061 | target = m_heap.onlyLocalAllocation(node->child1().node()); |
| 1062 | if (target && target->isRegExpObjectAllocation()) { |
| 1063 | writes.add( |
| 1064 | PromotedLocationDescriptor(RegExpObjectLastIndexPLoc), |
| 1065 | LazyNode(node->child2().node())); |
| 1066 | } else { |
| 1067 | m_heap.escape(node->child1().node()); |
| 1068 | m_heap.escape(node->child2().node()); |
| 1069 | } |
| 1070 | break; |
| 1071 | |
| 1072 | case Check: |
| 1073 | case CheckVarargs: |
| 1074 | m_graph.doToChildren( |
| 1075 | node, |
| 1076 | [&] (Edge edge) { |
| 1077 | if (edge.willNotHaveCheck()) |
| 1078 | return; |
| 1079 | |
| 1080 | if (alreadyChecked(edge.useKind(), SpecObject)) |
| 1081 | return; |
| 1082 | |
| 1083 | m_heap.escape(edge.node()); |
| 1084 | }); |
| 1085 | break; |
| 1086 | |
| 1087 | case MovHint: |
| 1088 | case PutHint: |
| 1089 | // Handled by OSR availability analysis |
| 1090 | break; |
| 1091 | |
| 1092 | case FilterCallLinkStatus: |
| 1093 | case FilterGetByIdStatus: |
| 1094 | case FilterPutByIdStatus: |
| 1095 | case FilterInByIdStatus: |
| 1096 | break; |
| 1097 | |
| 1098 | default: |
| 1099 | m_graph.doToChildren( |
| 1100 | node, |
| 1101 | [&] (Edge edge) { |
| 1102 | m_heap.escape(edge.node()); |
| 1103 | }); |
| 1104 | break; |
| 1105 | } |
| 1106 | |
| 1107 | if (exactRead) { |
| 1108 | ASSERT(target); |
| 1109 | ASSERT(writes.isEmpty()); |
| 1110 | if (Node* value = heapResolve(PromotedHeapLocation(target->identifier(), exactRead))) { |
| 1111 | ASSERT(!value->replacement()); |
| 1112 | node->replaceWith(m_graph, value); |
| 1113 | } |
| 1114 | Node* identifier = target->get(exactRead); |
| 1115 | if (identifier) |
| 1116 | m_heap.newPointer(node, identifier); |
| 1117 | } |
| 1118 | |
| 1119 | for (auto entry : writes) { |
| 1120 | ASSERT(target); |
| 1121 | if (entry.value.isNode()) |
| 1122 | target->set(entry.key, m_heap.follow(entry.value.asNode())); |
| 1123 | else |
| 1124 | target->remove(entry.key); |
| 1125 | heapWrite(PromotedHeapLocation(target->identifier(), entry.key), entry.value); |
| 1126 | } |
| 1127 | |
| 1128 | m_heap.assertIsValid(); |
| 1129 | } |
| 1130 | |
| 1131 | bool determineSinkCandidates() |
| 1132 | { |
| 1133 | m_sinkCandidates.clear(); |
| 1134 | m_materializationToEscapee.clear(); |
| 1135 | m_materializationSiteToMaterializations.clear(); |
| 1136 | m_materializationSiteToRecoveries.clear(); |
| 1137 | m_materializationSiteToHints.clear(); |
| 1138 | |
| 1139 | // Logically we wish to consider every allocation and sink |
| 1140 | // it. However, it is probably not profitable to sink an |
| 1141 | // allocation that will always escape. So, we only sink an |
| 1142 | // allocation if one of the following is true: |
| 1143 | // |
| 1144 | // 1) There exists a basic block with only backwards outgoing |
| 1145 | // edges (or no outgoing edges) in which the node wasn't |
| 1146 | // materialized. This is meant to catch |
| 1147 | // effectively-infinite loops in which we don't need to |
| 1148 | // have allocated the object. |
| 1149 | // |
| 1150 | // 2) There exists a basic block at the tail of which the node |
| 1151 | // is dead and not materialized. |
| 1152 | // |
| 1153 | // 3) The sum of execution counts of the materializations is |
| 1154 | // less than the sum of execution counts of the original |
| 1155 | // node. |
| 1156 | // |
| 1157 | // We currently implement only rule #2. |
| 1158 | // FIXME: Implement the two other rules. |
| 1159 | // https://bugs.webkit.org/show_bug.cgi?id=137073 (rule #1) |
| 1160 | // https://bugs.webkit.org/show_bug.cgi?id=137074 (rule #3) |
| 1161 | // |
| 1162 | // However, these rules allow for a sunk object to be put into |
| 1163 | // a non-sunk one, which we don't support. We could solve this |
| 1164 | // by supporting PutHints on local allocations, making these |
| 1165 | // objects only partially correct, and we would need to adapt |
| 1166 | // the OSR availability analysis and OSR exit to handle |
| 1167 | // this. This would be totally doable, but would create a |
| 1168 | // super rare, and thus bug-prone, code path. |
| 1169 | // So, instead, we need to implement one of the following |
| 1170 | // closure rules: |
| 1171 | // |
| 1172 | // 1) If we put a sink candidate into a local allocation that |
| 1173 | // is not a sink candidate, change our minds and don't |
| 1174 | // actually sink the sink candidate. |
| 1175 | // |
| 1176 | // 2) If we put a sink candidate into a local allocation, that |
| 1177 | // allocation becomes a sink candidate as well. |
| 1178 | // |
| 1179 | // We currently choose to implement closure rule #2. |
| 1180 | HashMap<Node*, Vector<Node*>> dependencies; |
| 1181 | bool hasUnescapedReads = false; |
| 1182 | for (BasicBlock* block : m_graph.blocksInPreOrder()) { |
| 1183 | m_heap = m_heapAtHead[block]; |
| 1184 | |
| 1185 | for (Node* node : *block) { |
| 1186 | handleNode( |
| 1187 | node, |
| 1188 | [&] (PromotedHeapLocation location, LazyNode value) { |
| 1189 | if (!value.isNode()) |
| 1190 | return; |
| 1191 | |
| 1192 | Allocation* allocation = m_heap.onlyLocalAllocation(value.asNode()); |
| 1193 | if (allocation && !allocation->isEscapedAllocation()) |
| 1194 | dependencies.add(allocation->identifier(), Vector<Node*>()).iterator->value.append(location.base()); |
| 1195 | }, |
| 1196 | [&] (PromotedHeapLocation) -> Node* { |
| 1197 | hasUnescapedReads = true; |
| 1198 | return nullptr; |
| 1199 | }); |
| 1200 | } |
| 1201 | |
| 1202 | // The sink candidates are initially the unescaped |
| 1203 | // allocations dying at tail of blocks |
| 1204 | NodeSet allocations; |
| 1205 | for (const auto& entry : m_heap.allocations()) { |
| 1206 | if (!entry.value.isEscapedAllocation()) |
| 1207 | allocations.addVoid(entry.key); |
| 1208 | } |
| 1209 | |
| 1210 | m_heap.pruneByLiveness(m_combinedLiveness.liveAtTail[block]); |
| 1211 | |
| 1212 | for (Node* identifier : allocations) { |
| 1213 | if (!m_heap.isAllocation(identifier)) |
| 1214 | m_sinkCandidates.addVoid(identifier); |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | auto forEachEscapee = [&] (auto callback) { |
| 1219 | for (BasicBlock* block : m_graph.blocksInNaturalOrder()) { |
| 1220 | m_heap = m_heapAtHead[block]; |
| 1221 | m_heap.setWantEscapees(); |
| 1222 | |
| 1223 | for (Node* node : *block) { |
| 1224 | handleNode( |
| 1225 | node, |
| 1226 | [] (PromotedHeapLocation, LazyNode) { }, |
| 1227 | [] (PromotedHeapLocation) -> Node* { |
| 1228 | return nullptr; |
| 1229 | }); |
| 1230 | auto escapees = m_heap.takeEscapees(); |
| 1231 | escapees.removeIf([&] (const auto& entry) { return !m_sinkCandidates.contains(entry.key); }); |
| 1232 | callback(escapees, node); |
| 1233 | } |
| 1234 | |
| 1235 | m_heap.pruneByLiveness(m_combinedLiveness.liveAtTail[block]); |
| 1236 | |
| 1237 | { |
| 1238 | HashMap<Node*, Allocation> escapingOnEdge; |
| 1239 | for (const auto& entry : m_heap.allocations()) { |
| 1240 | if (entry.value.isEscapedAllocation()) |
| 1241 | continue; |
| 1242 | |
| 1243 | bool mustEscape = false; |
| 1244 | for (BasicBlock* successorBlock : block->successors()) { |
| 1245 | if (!m_heapAtHead[successorBlock].isAllocation(entry.key) |
| 1246 | || m_heapAtHead[successorBlock].getAllocation(entry.key).isEscapedAllocation()) |
| 1247 | mustEscape = true; |
| 1248 | } |
| 1249 | |
| 1250 | if (mustEscape && m_sinkCandidates.contains(entry.key)) |
| 1251 | escapingOnEdge.add(entry.key, entry.value); |
| 1252 | } |
| 1253 | callback(escapingOnEdge, block->terminal()); |
| 1254 | } |
| 1255 | } |
| 1256 | }; |
| 1257 | |
| 1258 | if (m_sinkCandidates.size()) { |
| 1259 | // If we're moving an allocation to `where` in the program, we need to ensure |
| 1260 | // we can still walk the stack at that point in the program for the |
| 1261 | // InlineCallFrame of the original allocation. Certain InlineCallFrames rely on |
| 1262 | // data in the stack when taking a stack trace. All allocation sites can do a |
| 1263 | // stack walk (we do a stack walk when we GC). Conservatively, we say we're |
| 1264 | // still ok to move this allocation if we are moving within the same InlineCallFrame. |
| 1265 | // We could be more precise here and do an analysis of stack writes. However, |
| 1266 | // this scenario is so rare that we just take the conservative-and-straight-forward |
| 1267 | // approach of checking that we're in the same InlineCallFrame. |
| 1268 | |
| 1269 | forEachEscapee([&] (HashMap<Node*, Allocation>& escapees, Node* where) { |
| 1270 | for (Node* allocation : escapees.keys()) { |
| 1271 | InlineCallFrame* inlineCallFrame = allocation->origin.semantic.inlineCallFrame(); |
| 1272 | if (!inlineCallFrame) |
| 1273 | continue; |
| 1274 | if ((inlineCallFrame->isClosureCall || inlineCallFrame->isVarargs()) && inlineCallFrame != where->origin.semantic.inlineCallFrame()) |
| 1275 | m_sinkCandidates.remove(allocation); |
| 1276 | } |
| 1277 | }); |
| 1278 | } |
| 1279 | |
| 1280 | // Ensure that the set of sink candidates is closed for put operations |
| 1281 | // This is (2) as described above. |
| 1282 | Vector<Node*> worklist; |
| 1283 | worklist.appendRange(m_sinkCandidates.begin(), m_sinkCandidates.end()); |
| 1284 | |
| 1285 | while (!worklist.isEmpty()) { |
| 1286 | for (Node* identifier : dependencies.get(worklist.takeLast())) { |
| 1287 | if (m_sinkCandidates.add(identifier).isNewEntry) |
| 1288 | worklist.append(identifier); |
| 1289 | } |
| 1290 | } |
| 1291 | |
| 1292 | if (m_sinkCandidates.isEmpty()) |
| 1293 | return hasUnescapedReads; |
| 1294 | |
| 1295 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) |
| 1296 | dataLog("Candidates: " , listDump(m_sinkCandidates), "\n" ); |
| 1297 | |
| 1298 | |
| 1299 | // Create the materialization nodes. |
| 1300 | forEachEscapee([&] (HashMap<Node*, Allocation>& escapees, Node* where) { |
| 1301 | placeMaterializations(WTFMove(escapees), where); |
| 1302 | }); |
| 1303 | |
| 1304 | return hasUnescapedReads || !m_sinkCandidates.isEmpty(); |
| 1305 | } |
| 1306 | |
| 1307 | void placeMaterializations(HashMap<Node*, Allocation> escapees, Node* where) |
| 1308 | { |
| 1309 | // First collect the hints that will be needed when the node |
| 1310 | // we materialize is still stored into other unescaped sink candidates. |
| 1311 | // The way to interpret this vector is: |
| 1312 | // |
| 1313 | // PromotedHeapLocation(NotEscapedAllocation, field) = identifierAllocation |
| 1314 | // |
| 1315 | // e.g: |
| 1316 | // PromotedHeapLocation(@PhantomNewFunction, FunctionActivationPLoc) = IdentifierOf(@MaterializeCreateActivation) |
| 1317 | // or: |
| 1318 | // PromotedHeapLocation(@PhantomCreateActivation, ClosureVarPLoc(x)) = IdentifierOf(@NewFunction) |
| 1319 | // |
| 1320 | // When the rhs of the `=` is to be materialized at this `where` point in the program |
| 1321 | // and IdentifierOf(Materialization) is the original sunken allocation of the materialization. |
| 1322 | // |
| 1323 | // The reason we need to collect all the `identifiers` here is that |
| 1324 | // we may materialize multiple versions of the allocation along control |
| 1325 | // flow edges. We will PutHint these values along those edges. However, |
| 1326 | // we also need to PutHint them when we join and have a Phi of the allocations. |
| 1327 | Vector<std::pair<PromotedHeapLocation, Node*>> hints; |
| 1328 | for (const auto& entry : m_heap.allocations()) { |
| 1329 | if (escapees.contains(entry.key)) |
| 1330 | continue; |
| 1331 | |
| 1332 | for (const auto& field : entry.value.fields()) { |
| 1333 | ASSERT(m_sinkCandidates.contains(entry.key) || !escapees.contains(field.value)); |
| 1334 | auto iter = escapees.find(field.value); |
| 1335 | if (iter != escapees.end()) { |
| 1336 | ASSERT(m_sinkCandidates.contains(field.value)); |
| 1337 | hints.append(std::make_pair(PromotedHeapLocation(entry.key, field.key), field.value)); |
| 1338 | } |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | // Now we need to order the materialization. Any order is |
| 1343 | // valid (as long as we materialize a node first if it is |
| 1344 | // needed for the materialization of another node, e.g. a |
| 1345 | // function's activation must be materialized before the |
| 1346 | // function itself), but we want to try minimizing the number |
| 1347 | // of times we have to place Puts to close cycles after a |
| 1348 | // materialization. In other words, we are trying to find the |
| 1349 | // minimum number of materializations to remove from the |
| 1350 | // materialization graph to make it a DAG, known as the |
| 1351 | // (vertex) feedback set problem. Unfortunately, this is a |
| 1352 | // NP-hard problem, which we don't want to solve exactly. |
| 1353 | // |
| 1354 | // Instead, we use a simple greedy procedure, that procedes as |
| 1355 | // follow: |
| 1356 | // - While there is at least one node with no outgoing edge |
| 1357 | // amongst the remaining materializations, materialize it |
| 1358 | // first |
| 1359 | // |
| 1360 | // - Similarily, while there is at least one node with no |
| 1361 | // incoming edge amongst the remaining materializations, |
| 1362 | // materialize it last. |
| 1363 | // |
| 1364 | // - When both previous conditions are false, we have an |
| 1365 | // actual cycle, and we need to pick a node to |
| 1366 | // materialize. We try greedily to remove the "pressure" on |
| 1367 | // the remaining nodes by choosing the node with maximum |
| 1368 | // |incoming edges| * |outgoing edges| as a measure of how |
| 1369 | // "central" to the graph it is. We materialize it first, |
| 1370 | // so that all the recoveries will be Puts of things into |
| 1371 | // it (rather than Puts of the materialization into other |
| 1372 | // objects), which means we will have a single |
| 1373 | // StoreBarrier. |
| 1374 | |
| 1375 | |
| 1376 | // Compute dependencies between materializations |
| 1377 | HashMap<Node*, NodeSet> dependencies; |
| 1378 | HashMap<Node*, NodeSet> reverseDependencies; |
| 1379 | HashMap<Node*, NodeSet> forMaterialization; |
| 1380 | for (const auto& entry : escapees) { |
| 1381 | auto& myDependencies = dependencies.add(entry.key, NodeSet()).iterator->value; |
| 1382 | auto& myDependenciesForMaterialization = forMaterialization.add(entry.key, NodeSet()).iterator->value; |
| 1383 | reverseDependencies.add(entry.key, NodeSet()); |
| 1384 | for (const auto& field : entry.value.fields()) { |
| 1385 | if (escapees.contains(field.value) && field.value != entry.key) { |
| 1386 | myDependencies.addVoid(field.value); |
| 1387 | reverseDependencies.add(field.value, NodeSet()).iterator->value.addVoid(entry.key); |
| 1388 | if (field.key.neededForMaterialization()) |
| 1389 | myDependenciesForMaterialization.addVoid(field.value); |
| 1390 | } |
| 1391 | } |
| 1392 | } |
| 1393 | |
| 1394 | // Helper function to update the materialized set and the |
| 1395 | // dependencies |
| 1396 | NodeSet materialized; |
| 1397 | auto materialize = [&] (Node* identifier) { |
| 1398 | materialized.addVoid(identifier); |
| 1399 | for (Node* dep : dependencies.get(identifier)) |
| 1400 | reverseDependencies.find(dep)->value.remove(identifier); |
| 1401 | for (Node* rdep : reverseDependencies.get(identifier)) { |
| 1402 | dependencies.find(rdep)->value.remove(identifier); |
| 1403 | forMaterialization.find(rdep)->value.remove(identifier); |
| 1404 | } |
| 1405 | dependencies.remove(identifier); |
| 1406 | reverseDependencies.remove(identifier); |
| 1407 | forMaterialization.remove(identifier); |
| 1408 | }; |
| 1409 | |
| 1410 | // Nodes without remaining unmaterialized fields will be |
| 1411 | // materialized first - amongst the remaining unmaterialized |
| 1412 | // nodes |
| 1413 | StdList<Allocation> toMaterialize; |
| 1414 | auto firstPos = toMaterialize.begin(); |
| 1415 | auto materializeFirst = [&] (Allocation&& allocation) { |
| 1416 | materialize(allocation.identifier()); |
| 1417 | // We need to insert *after* the current position |
| 1418 | if (firstPos != toMaterialize.end()) |
| 1419 | ++firstPos; |
| 1420 | firstPos = toMaterialize.insert(firstPos, WTFMove(allocation)); |
| 1421 | }; |
| 1422 | |
| 1423 | // Nodes that no other unmaterialized node points to will be |
| 1424 | // materialized last - amongst the remaining unmaterialized |
| 1425 | // nodes |
| 1426 | auto lastPos = toMaterialize.end(); |
| 1427 | auto materializeLast = [&] (Allocation&& allocation) { |
| 1428 | materialize(allocation.identifier()); |
| 1429 | lastPos = toMaterialize.insert(lastPos, WTFMove(allocation)); |
| 1430 | }; |
| 1431 | |
| 1432 | // These are the promoted locations that contains some of the |
| 1433 | // allocations we are currently escaping. If they are a location on |
| 1434 | // some other allocation we are currently materializing, we will need |
| 1435 | // to "recover" their value with a real put once the corresponding |
| 1436 | // allocation is materialized; if they are a location on some other |
| 1437 | // not-yet-materialized allocation, we will need a PutHint. |
| 1438 | Vector<PromotedHeapLocation> toRecover; |
| 1439 | |
| 1440 | // This loop does the actual cycle breaking |
| 1441 | while (!escapees.isEmpty()) { |
| 1442 | materialized.clear(); |
| 1443 | |
| 1444 | // Materialize nodes that won't require recoveries if we can |
| 1445 | for (auto& entry : escapees) { |
| 1446 | if (!forMaterialization.find(entry.key)->value.isEmpty()) |
| 1447 | continue; |
| 1448 | |
| 1449 | if (dependencies.find(entry.key)->value.isEmpty()) { |
| 1450 | materializeFirst(WTFMove(entry.value)); |
| 1451 | continue; |
| 1452 | } |
| 1453 | |
| 1454 | if (reverseDependencies.find(entry.key)->value.isEmpty()) { |
| 1455 | materializeLast(WTFMove(entry.value)); |
| 1456 | continue; |
| 1457 | } |
| 1458 | } |
| 1459 | |
| 1460 | // We reach this only if there is an actual cycle that needs |
| 1461 | // breaking. Because we do not want to solve a NP-hard problem |
| 1462 | // here, we just heuristically pick a node and materialize it |
| 1463 | // first. |
| 1464 | if (materialized.isEmpty()) { |
| 1465 | uint64_t maxEvaluation = 0; |
| 1466 | Allocation* bestAllocation = nullptr; |
| 1467 | for (auto& entry : escapees) { |
| 1468 | if (!forMaterialization.find(entry.key)->value.isEmpty()) |
| 1469 | continue; |
| 1470 | |
| 1471 | uint64_t evaluation = |
| 1472 | static_cast<uint64_t>(dependencies.get(entry.key).size()) * reverseDependencies.get(entry.key).size(); |
| 1473 | if (evaluation > maxEvaluation) { |
| 1474 | maxEvaluation = evaluation; |
| 1475 | bestAllocation = &entry.value; |
| 1476 | } |
| 1477 | } |
| 1478 | RELEASE_ASSERT(maxEvaluation > 0); |
| 1479 | |
| 1480 | materializeFirst(WTFMove(*bestAllocation)); |
| 1481 | } |
| 1482 | RELEASE_ASSERT(!materialized.isEmpty()); |
| 1483 | |
| 1484 | for (Node* identifier : materialized) |
| 1485 | escapees.remove(identifier); |
| 1486 | } |
| 1487 | |
| 1488 | materialized.clear(); |
| 1489 | |
| 1490 | NodeSet escaped; |
| 1491 | for (const Allocation& allocation : toMaterialize) |
| 1492 | escaped.addVoid(allocation.identifier()); |
| 1493 | for (const Allocation& allocation : toMaterialize) { |
| 1494 | for (const auto& field : allocation.fields()) { |
| 1495 | if (escaped.contains(field.value) && !materialized.contains(field.value)) |
| 1496 | toRecover.append(PromotedHeapLocation(allocation.identifier(), field.key)); |
| 1497 | } |
| 1498 | materialized.addVoid(allocation.identifier()); |
| 1499 | } |
| 1500 | |
| 1501 | Vector<Node*>& materializations = m_materializationSiteToMaterializations.add( |
| 1502 | where, Vector<Node*>()).iterator->value; |
| 1503 | |
| 1504 | for (const Allocation& allocation : toMaterialize) { |
| 1505 | Node* materialization = createMaterialization(allocation, where); |
| 1506 | materializations.append(materialization); |
| 1507 | m_materializationToEscapee.add(materialization, allocation.identifier()); |
| 1508 | } |
| 1509 | |
| 1510 | if (!toRecover.isEmpty()) { |
| 1511 | m_materializationSiteToRecoveries.add( |
| 1512 | where, Vector<PromotedHeapLocation>()).iterator->value.appendVector(toRecover); |
| 1513 | } |
| 1514 | |
| 1515 | // The hints need to be after the "real" recoveries so that we |
| 1516 | // don't hint not-yet-complete objects |
| 1517 | m_materializationSiteToHints.add( |
| 1518 | where, Vector<std::pair<PromotedHeapLocation, Node*>>()).iterator->value.appendVector(hints); |
| 1519 | } |
| 1520 | |
| 1521 | Node* createMaterialization(const Allocation& allocation, Node* where) |
| 1522 | { |
| 1523 | // FIXME: This is the only place where we actually use the |
| 1524 | // fact that an allocation's identifier is indeed the node |
| 1525 | // that created the allocation. |
| 1526 | switch (allocation.kind()) { |
| 1527 | case Allocation::Kind::Object: { |
| 1528 | ObjectMaterializationData* data = m_graph.m_objectMaterializationData.add(); |
| 1529 | |
| 1530 | return m_graph.addNode( |
| 1531 | allocation.identifier()->prediction(), Node::VarArg, MaterializeNewObject, |
| 1532 | where->origin.withSemantic(allocation.identifier()->origin.semantic), |
| 1533 | OpInfo(m_graph.addStructureSet(allocation.structures())), OpInfo(data), 0, 0); |
| 1534 | } |
| 1535 | |
| 1536 | case Allocation::Kind::AsyncGeneratorFunction: |
| 1537 | case Allocation::Kind::AsyncFunction: |
| 1538 | case Allocation::Kind::GeneratorFunction: |
| 1539 | case Allocation::Kind::Function: { |
| 1540 | FrozenValue* executable = allocation.identifier()->cellOperand(); |
| 1541 | |
| 1542 | NodeType nodeType; |
| 1543 | switch (allocation.kind()) { |
| 1544 | case Allocation::Kind::GeneratorFunction: |
| 1545 | nodeType = NewGeneratorFunction; |
| 1546 | break; |
| 1547 | case Allocation::Kind::AsyncGeneratorFunction: |
| 1548 | nodeType = NewAsyncGeneratorFunction; |
| 1549 | break; |
| 1550 | case Allocation::Kind::AsyncFunction: |
| 1551 | nodeType = NewAsyncFunction; |
| 1552 | break; |
| 1553 | default: |
| 1554 | nodeType = NewFunction; |
| 1555 | } |
| 1556 | |
| 1557 | return m_graph.addNode( |
| 1558 | allocation.identifier()->prediction(), nodeType, |
| 1559 | where->origin.withSemantic( |
| 1560 | allocation.identifier()->origin.semantic), |
| 1561 | OpInfo(executable)); |
| 1562 | } |
| 1563 | |
| 1564 | case Allocation::Kind::Activation: { |
| 1565 | ObjectMaterializationData* data = m_graph.m_objectMaterializationData.add(); |
| 1566 | FrozenValue* symbolTable = allocation.identifier()->cellOperand(); |
| 1567 | |
| 1568 | return m_graph.addNode( |
| 1569 | allocation.identifier()->prediction(), Node::VarArg, MaterializeCreateActivation, |
| 1570 | where->origin.withSemantic( |
| 1571 | allocation.identifier()->origin.semantic), |
| 1572 | OpInfo(symbolTable), OpInfo(data), 0, 0); |
| 1573 | } |
| 1574 | |
| 1575 | case Allocation::Kind::RegExpObject: { |
| 1576 | FrozenValue* regExp = allocation.identifier()->cellOperand(); |
| 1577 | return m_graph.addNode( |
| 1578 | allocation.identifier()->prediction(), NewRegexp, |
| 1579 | where->origin.withSemantic( |
| 1580 | allocation.identifier()->origin.semantic), |
| 1581 | OpInfo(regExp)); |
| 1582 | } |
| 1583 | |
| 1584 | default: |
| 1585 | DFG_CRASH(m_graph, allocation.identifier(), "Bad allocation kind" ); |
| 1586 | } |
| 1587 | } |
| 1588 | |
| 1589 | void promoteLocalHeap() |
| 1590 | { |
| 1591 | // Collect the set of heap locations that we will be operating |
| 1592 | // over. |
| 1593 | HashSet<PromotedHeapLocation> locations; |
| 1594 | for (BasicBlock* block : m_graph.blocksInNaturalOrder()) { |
| 1595 | m_heap = m_heapAtHead[block]; |
| 1596 | |
| 1597 | for (Node* node : *block) { |
| 1598 | handleNode( |
| 1599 | node, |
| 1600 | [&] (PromotedHeapLocation location, LazyNode) { |
| 1601 | // If the location is not on a sink candidate, |
| 1602 | // we only sink it if it is read |
| 1603 | if (m_sinkCandidates.contains(location.base())) |
| 1604 | locations.addVoid(location); |
| 1605 | }, |
| 1606 | [&] (PromotedHeapLocation location) -> Node* { |
| 1607 | locations.addVoid(location); |
| 1608 | return nullptr; |
| 1609 | }); |
| 1610 | } |
| 1611 | } |
| 1612 | |
| 1613 | // Figure out which locations belong to which allocations. |
| 1614 | m_locationsForAllocation.clear(); |
| 1615 | for (PromotedHeapLocation location : locations) { |
| 1616 | auto result = m_locationsForAllocation.add( |
| 1617 | location.base(), |
| 1618 | Vector<PromotedHeapLocation>()); |
| 1619 | ASSERT(!result.iterator->value.contains(location)); |
| 1620 | result.iterator->value.append(location); |
| 1621 | } |
| 1622 | |
| 1623 | m_pointerSSA.reset(); |
| 1624 | m_allocationSSA.reset(); |
| 1625 | |
| 1626 | // Collect the set of "variables" that we will be sinking. |
| 1627 | m_locationToVariable.clear(); |
| 1628 | m_nodeToVariable.clear(); |
| 1629 | Vector<Node*> indexToNode; |
| 1630 | Vector<PromotedHeapLocation> indexToLocation; |
| 1631 | |
| 1632 | for (Node* index : m_sinkCandidates) { |
| 1633 | SSACalculator::Variable* variable = m_allocationSSA.newVariable(); |
| 1634 | m_nodeToVariable.add(index, variable); |
| 1635 | ASSERT(indexToNode.size() == variable->index()); |
| 1636 | indexToNode.append(index); |
| 1637 | } |
| 1638 | |
| 1639 | for (PromotedHeapLocation location : locations) { |
| 1640 | SSACalculator::Variable* variable = m_pointerSSA.newVariable(); |
| 1641 | m_locationToVariable.add(location, variable); |
| 1642 | ASSERT(indexToLocation.size() == variable->index()); |
| 1643 | indexToLocation.append(location); |
| 1644 | } |
| 1645 | |
| 1646 | // We insert all required constants at top of block 0 so that |
| 1647 | // they are inserted only once and we don't clutter the graph |
| 1648 | // with useless constants everywhere |
| 1649 | HashMap<FrozenValue*, Node*> lazyMapping; |
| 1650 | if (!m_bottom) |
| 1651 | m_bottom = m_insertionSet.insertConstant(0, m_graph.block(0)->at(0)->origin, jsNumber(1927)); |
| 1652 | |
| 1653 | Vector<HashSet<PromotedHeapLocation>> hintsForPhi(m_sinkCandidates.size()); |
| 1654 | |
| 1655 | for (BasicBlock* block : m_graph.blocksInNaturalOrder()) { |
| 1656 | m_heap = m_heapAtHead[block]; |
| 1657 | |
| 1658 | for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { |
| 1659 | Node* node = block->at(nodeIndex); |
| 1660 | |
| 1661 | // Some named properties can be added conditionally, |
| 1662 | // and that would necessitate bottoms |
| 1663 | for (PromotedHeapLocation location : m_locationsForAllocation.get(node)) { |
| 1664 | if (location.kind() != NamedPropertyPLoc) |
| 1665 | continue; |
| 1666 | |
| 1667 | SSACalculator::Variable* variable = m_locationToVariable.get(location); |
| 1668 | m_pointerSSA.newDef(variable, block, m_bottom); |
| 1669 | } |
| 1670 | |
| 1671 | for (Node* materialization : m_materializationSiteToMaterializations.get(node)) { |
| 1672 | Node* escapee = m_materializationToEscapee.get(materialization); |
| 1673 | m_allocationSSA.newDef(m_nodeToVariable.get(escapee), block, materialization); |
| 1674 | } |
| 1675 | |
| 1676 | for (std::pair<PromotedHeapLocation, Node*> pair : m_materializationSiteToHints.get(node)) { |
| 1677 | PromotedHeapLocation location = pair.first; |
| 1678 | Node* identifier = pair.second; |
| 1679 | // We're materializing `identifier` at this point, and the unmaterialized |
| 1680 | // version is inside `location`. We track which SSA variable this belongs |
| 1681 | // to in case we also need a PutHint for the Phi. |
| 1682 | if (UNLIKELY(validationEnabled())) { |
| 1683 | RELEASE_ASSERT(m_sinkCandidates.contains(location.base())); |
| 1684 | RELEASE_ASSERT(m_sinkCandidates.contains(identifier)); |
| 1685 | |
| 1686 | bool found = false; |
| 1687 | for (Node* materialization : m_materializationSiteToMaterializations.get(node)) { |
| 1688 | // We're materializing `identifier` here. This asserts that this is indeed the case. |
| 1689 | if (m_materializationToEscapee.get(materialization) == identifier) { |
| 1690 | found = true; |
| 1691 | break; |
| 1692 | } |
| 1693 | } |
| 1694 | RELEASE_ASSERT(found); |
| 1695 | } |
| 1696 | |
| 1697 | SSACalculator::Variable* variable = m_nodeToVariable.get(identifier); |
| 1698 | hintsForPhi[variable->index()].addVoid(location); |
| 1699 | } |
| 1700 | |
| 1701 | if (m_sinkCandidates.contains(node)) |
| 1702 | m_allocationSSA.newDef(m_nodeToVariable.get(node), block, node); |
| 1703 | |
| 1704 | handleNode( |
| 1705 | node, |
| 1706 | [&] (PromotedHeapLocation location, LazyNode value) { |
| 1707 | if (!locations.contains(location)) |
| 1708 | return; |
| 1709 | |
| 1710 | Node* nodeValue; |
| 1711 | if (value.isNode()) |
| 1712 | nodeValue = value.asNode(); |
| 1713 | else { |
| 1714 | auto iter = lazyMapping.find(value.asValue()); |
| 1715 | if (iter != lazyMapping.end()) |
| 1716 | nodeValue = iter->value; |
| 1717 | else { |
| 1718 | nodeValue = value.ensureIsNode( |
| 1719 | m_insertionSet, m_graph.block(0), 0); |
| 1720 | lazyMapping.add(value.asValue(), nodeValue); |
| 1721 | } |
| 1722 | } |
| 1723 | |
| 1724 | SSACalculator::Variable* variable = m_locationToVariable.get(location); |
| 1725 | m_pointerSSA.newDef(variable, block, nodeValue); |
| 1726 | }, |
| 1727 | [] (PromotedHeapLocation) -> Node* { |
| 1728 | return nullptr; |
| 1729 | }); |
| 1730 | } |
| 1731 | } |
| 1732 | m_insertionSet.execute(m_graph.block(0)); |
| 1733 | |
| 1734 | // Run the SSA calculators to create Phis |
| 1735 | m_pointerSSA.computePhis( |
| 1736 | [&] (SSACalculator::Variable* variable, BasicBlock* block) -> Node* { |
| 1737 | PromotedHeapLocation location = indexToLocation[variable->index()]; |
| 1738 | |
| 1739 | // Don't create Phi nodes for fields of dead allocations |
| 1740 | if (!m_heapAtHead[block].isAllocation(location.base())) |
| 1741 | return nullptr; |
| 1742 | |
| 1743 | // Don't create Phi nodes once we are escaped |
| 1744 | if (m_heapAtHead[block].getAllocation(location.base()).isEscapedAllocation()) |
| 1745 | return nullptr; |
| 1746 | |
| 1747 | // If we point to a single allocation, we will |
| 1748 | // directly use its materialization |
| 1749 | if (m_heapAtHead[block].follow(location)) |
| 1750 | return nullptr; |
| 1751 | |
| 1752 | Node* phiNode = m_graph.addNode(SpecHeapTop, Phi, block->at(0)->origin.withInvalidExit()); |
| 1753 | phiNode->mergeFlags(NodeResultJS); |
| 1754 | return phiNode; |
| 1755 | }); |
| 1756 | |
| 1757 | m_allocationSSA.computePhis( |
| 1758 | [&] (SSACalculator::Variable* variable, BasicBlock* block) -> Node* { |
| 1759 | Node* identifier = indexToNode[variable->index()]; |
| 1760 | |
| 1761 | // Don't create Phi nodes for dead allocations |
| 1762 | if (!m_heapAtHead[block].isAllocation(identifier)) |
| 1763 | return nullptr; |
| 1764 | |
| 1765 | // Don't create Phi nodes until we are escaped |
| 1766 | if (!m_heapAtHead[block].getAllocation(identifier).isEscapedAllocation()) |
| 1767 | return nullptr; |
| 1768 | |
| 1769 | Node* phiNode = m_graph.addNode(SpecHeapTop, Phi, block->at(0)->origin.withInvalidExit()); |
| 1770 | phiNode->mergeFlags(NodeResultJS); |
| 1771 | return phiNode; |
| 1772 | }); |
| 1773 | |
| 1774 | // Place Phis in the right places, replace all uses of any load with the appropriate |
| 1775 | // value, and create the materialization nodes. |
| 1776 | LocalOSRAvailabilityCalculator availabilityCalculator(m_graph); |
| 1777 | m_graph.clearReplacements(); |
| 1778 | for (BasicBlock* block : m_graph.blocksInPreOrder()) { |
| 1779 | m_heap = m_heapAtHead[block]; |
| 1780 | availabilityCalculator.beginBlock(block); |
| 1781 | |
| 1782 | // These mapping tables are intended to be lazy. If |
| 1783 | // something is omitted from the table, it means that |
| 1784 | // there haven't been any local stores to the promoted |
| 1785 | // heap location (or any local materialization). |
| 1786 | m_localMapping.clear(); |
| 1787 | m_escapeeToMaterialization.clear(); |
| 1788 | |
| 1789 | // Insert the Phi functions that we had previously |
| 1790 | // created. |
| 1791 | for (SSACalculator::Def* phiDef : m_pointerSSA.phisForBlock(block)) { |
| 1792 | SSACalculator::Variable* variable = phiDef->variable(); |
| 1793 | m_insertionSet.insert(0, phiDef->value()); |
| 1794 | |
| 1795 | PromotedHeapLocation location = indexToLocation[variable->index()]; |
| 1796 | m_localMapping.set(location, phiDef->value()); |
| 1797 | |
| 1798 | if (m_sinkCandidates.contains(location.base())) { |
| 1799 | m_insertionSet.insert( |
| 1800 | 0, |
| 1801 | location.createHint( |
| 1802 | m_graph, block->at(0)->origin.withInvalidExit(), phiDef->value())); |
| 1803 | } |
| 1804 | } |
| 1805 | |
| 1806 | for (SSACalculator::Def* phiDef : m_allocationSSA.phisForBlock(block)) { |
| 1807 | SSACalculator::Variable* variable = phiDef->variable(); |
| 1808 | m_insertionSet.insert(0, phiDef->value()); |
| 1809 | |
| 1810 | Node* identifier = indexToNode[variable->index()]; |
| 1811 | m_escapeeToMaterialization.add(identifier, phiDef->value()); |
| 1812 | bool canExit = false; |
| 1813 | insertOSRHintsForUpdate( |
| 1814 | 0, block->at(0)->origin, canExit, |
| 1815 | availabilityCalculator.m_availability, identifier, phiDef->value()); |
| 1816 | |
| 1817 | for (PromotedHeapLocation location : hintsForPhi[variable->index()]) { |
| 1818 | m_insertionSet.insert(0, |
| 1819 | location.createHint(m_graph, block->at(0)->origin.withInvalidExit(), phiDef->value())); |
| 1820 | m_localMapping.set(location, phiDef->value()); |
| 1821 | } |
| 1822 | } |
| 1823 | |
| 1824 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) { |
| 1825 | dataLog("Local mapping at " , pointerDump(block), ": " , mapDump(m_localMapping), "\n" ); |
| 1826 | dataLog("Local materializations at " , pointerDump(block), ": " , mapDump(m_escapeeToMaterialization), "\n" ); |
| 1827 | } |
| 1828 | |
| 1829 | for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { |
| 1830 | Node* node = block->at(nodeIndex); |
| 1831 | bool canExit = true; |
| 1832 | bool nextCanExit = node->origin.exitOK; |
| 1833 | for (PromotedHeapLocation location : m_locationsForAllocation.get(node)) { |
| 1834 | if (location.kind() != NamedPropertyPLoc) |
| 1835 | continue; |
| 1836 | |
| 1837 | m_localMapping.set(location, m_bottom); |
| 1838 | |
| 1839 | if (m_sinkCandidates.contains(node)) { |
| 1840 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) |
| 1841 | dataLog("For sink candidate " , node, " found location " , location, "\n" ); |
| 1842 | m_insertionSet.insert( |
| 1843 | nodeIndex + 1, |
| 1844 | location.createHint( |
| 1845 | m_graph, node->origin.takeValidExit(nextCanExit), m_bottom)); |
| 1846 | } |
| 1847 | } |
| 1848 | |
| 1849 | for (Node* materialization : m_materializationSiteToMaterializations.get(node)) { |
| 1850 | materialization->origin.exitOK &= canExit; |
| 1851 | Node* escapee = m_materializationToEscapee.get(materialization); |
| 1852 | populateMaterialization(block, materialization, escapee); |
| 1853 | m_escapeeToMaterialization.set(escapee, materialization); |
| 1854 | m_insertionSet.insert(nodeIndex, materialization); |
| 1855 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) |
| 1856 | dataLog("Materializing " , escapee, " => " , materialization, " at " , node, "\n" ); |
| 1857 | } |
| 1858 | |
| 1859 | for (PromotedHeapLocation location : m_materializationSiteToRecoveries.get(node)) |
| 1860 | m_insertionSet.insert(nodeIndex, createRecovery(block, location, node, canExit)); |
| 1861 | for (std::pair<PromotedHeapLocation, Node*> pair : m_materializationSiteToHints.get(node)) |
| 1862 | m_insertionSet.insert(nodeIndex, createRecovery(block, pair.first, node, canExit)); |
| 1863 | |
| 1864 | // We need to put the OSR hints after the recoveries, |
| 1865 | // because we only want the hints once the object is |
| 1866 | // complete |
| 1867 | for (Node* materialization : m_materializationSiteToMaterializations.get(node)) { |
| 1868 | Node* escapee = m_materializationToEscapee.get(materialization); |
| 1869 | insertOSRHintsForUpdate( |
| 1870 | nodeIndex, node->origin, canExit, |
| 1871 | availabilityCalculator.m_availability, escapee, materialization); |
| 1872 | } |
| 1873 | |
| 1874 | if (node->origin.exitOK && !canExit) { |
| 1875 | // We indicate that the exit state is fine now. It is OK because we updated the |
| 1876 | // state above. We need to indicate this manually because the validation doesn't |
| 1877 | // have enough information to infer that the exit state is fine. |
| 1878 | m_insertionSet.insertNode(nodeIndex, SpecNone, ExitOK, node->origin); |
| 1879 | } |
| 1880 | |
| 1881 | if (m_sinkCandidates.contains(node)) |
| 1882 | m_escapeeToMaterialization.set(node, node); |
| 1883 | |
| 1884 | availabilityCalculator.executeNode(node); |
| 1885 | |
| 1886 | bool desiredNextExitOK = node->origin.exitOK && !clobbersExitState(m_graph, node); |
| 1887 | |
| 1888 | bool doLower = false; |
| 1889 | handleNode( |
| 1890 | node, |
| 1891 | [&] (PromotedHeapLocation location, LazyNode value) { |
| 1892 | if (!locations.contains(location)) |
| 1893 | return; |
| 1894 | |
| 1895 | Node* nodeValue; |
| 1896 | if (value.isNode()) |
| 1897 | nodeValue = value.asNode(); |
| 1898 | else |
| 1899 | nodeValue = lazyMapping.get(value.asValue()); |
| 1900 | |
| 1901 | nodeValue = resolve(block, nodeValue); |
| 1902 | |
| 1903 | m_localMapping.set(location, nodeValue); |
| 1904 | |
| 1905 | if (!m_sinkCandidates.contains(location.base())) |
| 1906 | return; |
| 1907 | |
| 1908 | doLower = true; |
| 1909 | |
| 1910 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) |
| 1911 | dataLog("Creating hint with value " , nodeValue, " before " , node, "\n" ); |
| 1912 | m_insertionSet.insert( |
| 1913 | nodeIndex + 1, |
| 1914 | location.createHint( |
| 1915 | m_graph, node->origin.takeValidExit(nextCanExit), nodeValue)); |
| 1916 | }, |
| 1917 | [&] (PromotedHeapLocation location) -> Node* { |
| 1918 | return resolve(block, location); |
| 1919 | }); |
| 1920 | |
| 1921 | if (!nextCanExit && desiredNextExitOK) { |
| 1922 | // We indicate that the exit state is fine now. We need to do this because we |
| 1923 | // emitted hints that appear to invalidate the exit state. |
| 1924 | m_insertionSet.insertNode(nodeIndex + 1, SpecNone, ExitOK, node->origin); |
| 1925 | } |
| 1926 | |
| 1927 | if (m_sinkCandidates.contains(node) || doLower) { |
| 1928 | switch (node->op()) { |
| 1929 | case NewObject: |
| 1930 | node->convertToPhantomNewObject(); |
| 1931 | break; |
| 1932 | |
| 1933 | case NewFunction: |
| 1934 | node->convertToPhantomNewFunction(); |
| 1935 | break; |
| 1936 | |
| 1937 | case NewGeneratorFunction: |
| 1938 | node->convertToPhantomNewGeneratorFunction(); |
| 1939 | break; |
| 1940 | |
| 1941 | case NewAsyncGeneratorFunction: |
| 1942 | node->convertToPhantomNewAsyncGeneratorFunction(); |
| 1943 | break; |
| 1944 | |
| 1945 | case NewAsyncFunction: |
| 1946 | node->convertToPhantomNewAsyncFunction(); |
| 1947 | break; |
| 1948 | |
| 1949 | case CreateActivation: |
| 1950 | node->convertToPhantomCreateActivation(); |
| 1951 | break; |
| 1952 | |
| 1953 | case NewRegexp: |
| 1954 | node->convertToPhantomNewRegexp(); |
| 1955 | break; |
| 1956 | |
| 1957 | default: |
| 1958 | node->remove(m_graph); |
| 1959 | break; |
| 1960 | } |
| 1961 | } |
| 1962 | |
| 1963 | m_graph.doToChildren( |
| 1964 | node, |
| 1965 | [&] (Edge& edge) { |
| 1966 | edge.setNode(resolve(block, edge.node())); |
| 1967 | }); |
| 1968 | } |
| 1969 | |
| 1970 | // Gotta drop some Upsilons. |
| 1971 | NodeAndIndex terminal = block->findTerminal(); |
| 1972 | size_t upsilonInsertionPoint = terminal.index; |
| 1973 | NodeOrigin upsilonOrigin = terminal.node->origin; |
| 1974 | for (BasicBlock* successorBlock : block->successors()) { |
| 1975 | for (SSACalculator::Def* phiDef : m_pointerSSA.phisForBlock(successorBlock)) { |
| 1976 | Node* phiNode = phiDef->value(); |
| 1977 | SSACalculator::Variable* variable = phiDef->variable(); |
| 1978 | PromotedHeapLocation location = indexToLocation[variable->index()]; |
| 1979 | Node* incoming = resolve(block, location); |
| 1980 | |
| 1981 | m_insertionSet.insertNode( |
| 1982 | upsilonInsertionPoint, SpecNone, Upsilon, upsilonOrigin, |
| 1983 | OpInfo(phiNode), incoming->defaultEdge()); |
| 1984 | } |
| 1985 | |
| 1986 | for (SSACalculator::Def* phiDef : m_allocationSSA.phisForBlock(successorBlock)) { |
| 1987 | Node* phiNode = phiDef->value(); |
| 1988 | SSACalculator::Variable* variable = phiDef->variable(); |
| 1989 | Node* incoming = getMaterialization(block, indexToNode[variable->index()]); |
| 1990 | |
| 1991 | m_insertionSet.insertNode( |
| 1992 | upsilonInsertionPoint, SpecNone, Upsilon, upsilonOrigin, |
| 1993 | OpInfo(phiNode), incoming->defaultEdge()); |
| 1994 | } |
| 1995 | } |
| 1996 | |
| 1997 | m_insertionSet.execute(block); |
| 1998 | } |
| 1999 | } |
| 2000 | |
| 2001 | NEVER_INLINE Node* resolve(BasicBlock* block, PromotedHeapLocation location) |
| 2002 | { |
| 2003 | // If we are currently pointing to a single local allocation, |
| 2004 | // simply return the associated materialization. |
| 2005 | if (Node* identifier = m_heap.follow(location)) |
| 2006 | return getMaterialization(block, identifier); |
| 2007 | |
| 2008 | if (Node* result = m_localMapping.get(location)) |
| 2009 | return result; |
| 2010 | |
| 2011 | // This implies that there is no local mapping. Find a non-local mapping. |
| 2012 | SSACalculator::Def* def = m_pointerSSA.nonLocalReachingDef( |
| 2013 | block, m_locationToVariable.get(location)); |
| 2014 | ASSERT(def); |
| 2015 | ASSERT(def->value()); |
| 2016 | |
| 2017 | Node* result = def->value(); |
| 2018 | if (result->replacement()) |
| 2019 | result = result->replacement(); |
| 2020 | ASSERT(!result->replacement()); |
| 2021 | |
| 2022 | m_localMapping.add(location, result); |
| 2023 | return result; |
| 2024 | } |
| 2025 | |
| 2026 | NEVER_INLINE Node* resolve(BasicBlock* block, Node* node) |
| 2027 | { |
| 2028 | // If we are currently pointing to a single local allocation, |
| 2029 | // simply return the associated materialization. |
| 2030 | if (Node* identifier = m_heap.follow(node)) |
| 2031 | return getMaterialization(block, identifier); |
| 2032 | |
| 2033 | if (node->replacement()) |
| 2034 | node = node->replacement(); |
| 2035 | ASSERT(!node->replacement()); |
| 2036 | |
| 2037 | return node; |
| 2038 | } |
| 2039 | |
| 2040 | NEVER_INLINE Node* getMaterialization(BasicBlock* block, Node* identifier) |
| 2041 | { |
| 2042 | ASSERT(m_heap.isAllocation(identifier)); |
| 2043 | if (!m_sinkCandidates.contains(identifier)) |
| 2044 | return identifier; |
| 2045 | |
| 2046 | if (Node* materialization = m_escapeeToMaterialization.get(identifier)) |
| 2047 | return materialization; |
| 2048 | |
| 2049 | SSACalculator::Def* def = m_allocationSSA.nonLocalReachingDef( |
| 2050 | block, m_nodeToVariable.get(identifier)); |
| 2051 | ASSERT(def && def->value()); |
| 2052 | m_escapeeToMaterialization.add(identifier, def->value()); |
| 2053 | ASSERT(!def->value()->replacement()); |
| 2054 | return def->value(); |
| 2055 | } |
| 2056 | |
| 2057 | void insertOSRHintsForUpdate(unsigned nodeIndex, NodeOrigin origin, bool& canExit, AvailabilityMap& availability, Node* escapee, Node* materialization) |
| 2058 | { |
| 2059 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) { |
| 2060 | dataLog("Inserting OSR hints at " , origin, ":\n" ); |
| 2061 | dataLog(" Escapee: " , escapee, "\n" ); |
| 2062 | dataLog(" Materialization: " , materialization, "\n" ); |
| 2063 | dataLog(" Availability: " , availability, "\n" ); |
| 2064 | } |
| 2065 | |
| 2066 | // We need to follow() the value in the heap. |
| 2067 | // Consider the following graph: |
| 2068 | // |
| 2069 | // Block #0 |
| 2070 | // 0: NewObject({}) |
| 2071 | // 1: NewObject({}) |
| 2072 | // -: PutByOffset(@0, @1, x:0) |
| 2073 | // -: PutStructure(@0, {x:0}) |
| 2074 | // 2: GetByOffset(@0, x:0) |
| 2075 | // -: MovHint(@2, loc1) |
| 2076 | // -: Branch(#1, #2) |
| 2077 | // |
| 2078 | // Block #1 |
| 2079 | // 3: Call(f, @1) |
| 2080 | // 4: Return(@0) |
| 2081 | // |
| 2082 | // Block #2 |
| 2083 | // -: Return(undefined) |
| 2084 | // |
| 2085 | // We need to materialize @1 at @3, and when doing so we need |
| 2086 | // to insert a MovHint for the materialization into loc1 as |
| 2087 | // well. |
| 2088 | // In order to do this, we say that we need to insert an |
| 2089 | // update hint for any availability whose node resolve()s to |
| 2090 | // the materialization. |
| 2091 | for (auto entry : availability.m_heap) { |
| 2092 | if (!entry.value.hasNode()) |
| 2093 | continue; |
| 2094 | if (m_heap.follow(entry.value.node()) != escapee) |
| 2095 | continue; |
| 2096 | |
| 2097 | m_insertionSet.insert( |
| 2098 | nodeIndex, |
| 2099 | entry.key.createHint(m_graph, origin.takeValidExit(canExit), materialization)); |
| 2100 | } |
| 2101 | |
| 2102 | for (unsigned i = availability.m_locals.size(); i--;) { |
| 2103 | if (!availability.m_locals[i].hasNode()) |
| 2104 | continue; |
| 2105 | if (m_heap.follow(availability.m_locals[i].node()) != escapee) |
| 2106 | continue; |
| 2107 | |
| 2108 | int operand = availability.m_locals.operandForIndex(i); |
| 2109 | m_insertionSet.insertNode( |
| 2110 | nodeIndex, SpecNone, MovHint, origin.takeValidExit(canExit), OpInfo(operand), |
| 2111 | materialization->defaultEdge()); |
| 2112 | } |
| 2113 | } |
| 2114 | |
| 2115 | void populateMaterialization(BasicBlock* block, Node* node, Node* escapee) |
| 2116 | { |
| 2117 | Allocation& allocation = m_heap.getAllocation(escapee); |
| 2118 | switch (node->op()) { |
| 2119 | case MaterializeNewObject: { |
| 2120 | ObjectMaterializationData& data = node->objectMaterializationData(); |
| 2121 | unsigned firstChild = m_graph.m_varArgChildren.size(); |
| 2122 | |
| 2123 | Vector<PromotedHeapLocation> locations = m_locationsForAllocation.get(escapee); |
| 2124 | |
| 2125 | PromotedHeapLocation structure(StructurePLoc, allocation.identifier()); |
| 2126 | ASSERT(locations.contains(structure)); |
| 2127 | |
| 2128 | m_graph.m_varArgChildren.append(Edge(resolve(block, structure), KnownCellUse)); |
| 2129 | |
| 2130 | for (PromotedHeapLocation location : locations) { |
| 2131 | switch (location.kind()) { |
| 2132 | case StructurePLoc: |
| 2133 | ASSERT(location == structure); |
| 2134 | break; |
| 2135 | |
| 2136 | case NamedPropertyPLoc: { |
| 2137 | ASSERT(location.base() == allocation.identifier()); |
| 2138 | data.m_properties.append(location.descriptor()); |
| 2139 | Node* value = resolve(block, location); |
| 2140 | if (m_sinkCandidates.contains(value)) |
| 2141 | m_graph.m_varArgChildren.append(m_bottom); |
| 2142 | else |
| 2143 | m_graph.m_varArgChildren.append(value); |
| 2144 | break; |
| 2145 | } |
| 2146 | |
| 2147 | default: |
| 2148 | DFG_CRASH(m_graph, node, "Bad location kind" ); |
| 2149 | } |
| 2150 | } |
| 2151 | |
| 2152 | node->children = AdjacencyList( |
| 2153 | AdjacencyList::Variable, |
| 2154 | firstChild, m_graph.m_varArgChildren.size() - firstChild); |
| 2155 | break; |
| 2156 | } |
| 2157 | |
| 2158 | case MaterializeCreateActivation: { |
| 2159 | ObjectMaterializationData& data = node->objectMaterializationData(); |
| 2160 | |
| 2161 | unsigned firstChild = m_graph.m_varArgChildren.size(); |
| 2162 | |
| 2163 | Vector<PromotedHeapLocation> locations = m_locationsForAllocation.get(escapee); |
| 2164 | |
| 2165 | PromotedHeapLocation symbolTable(ActivationSymbolTablePLoc, allocation.identifier()); |
| 2166 | ASSERT(locations.contains(symbolTable)); |
| 2167 | ASSERT(node->cellOperand() == resolve(block, symbolTable)->constant()); |
| 2168 | m_graph.m_varArgChildren.append(Edge(resolve(block, symbolTable), KnownCellUse)); |
| 2169 | |
| 2170 | PromotedHeapLocation scope(ActivationScopePLoc, allocation.identifier()); |
| 2171 | ASSERT(locations.contains(scope)); |
| 2172 | m_graph.m_varArgChildren.append(Edge(resolve(block, scope), KnownCellUse)); |
| 2173 | |
| 2174 | for (PromotedHeapLocation location : locations) { |
| 2175 | switch (location.kind()) { |
| 2176 | case ActivationScopePLoc: { |
| 2177 | ASSERT(location == scope); |
| 2178 | break; |
| 2179 | } |
| 2180 | |
| 2181 | case ActivationSymbolTablePLoc: { |
| 2182 | ASSERT(location == symbolTable); |
| 2183 | break; |
| 2184 | } |
| 2185 | |
| 2186 | case ClosureVarPLoc: { |
| 2187 | ASSERT(location.base() == allocation.identifier()); |
| 2188 | data.m_properties.append(location.descriptor()); |
| 2189 | Node* value = resolve(block, location); |
| 2190 | if (m_sinkCandidates.contains(value)) |
| 2191 | m_graph.m_varArgChildren.append(m_bottom); |
| 2192 | else |
| 2193 | m_graph.m_varArgChildren.append(value); |
| 2194 | break; |
| 2195 | } |
| 2196 | |
| 2197 | default: |
| 2198 | DFG_CRASH(m_graph, node, "Bad location kind" ); |
| 2199 | } |
| 2200 | } |
| 2201 | |
| 2202 | node->children = AdjacencyList( |
| 2203 | AdjacencyList::Variable, |
| 2204 | firstChild, m_graph.m_varArgChildren.size() - firstChild); |
| 2205 | break; |
| 2206 | } |
| 2207 | |
| 2208 | case NewFunction: |
| 2209 | case NewGeneratorFunction: |
| 2210 | case NewAsyncGeneratorFunction: |
| 2211 | case NewAsyncFunction: { |
| 2212 | Vector<PromotedHeapLocation> locations = m_locationsForAllocation.get(escapee); |
| 2213 | ASSERT(locations.size() == 2); |
| 2214 | |
| 2215 | PromotedHeapLocation executable(FunctionExecutablePLoc, allocation.identifier()); |
| 2216 | ASSERT_UNUSED(executable, locations.contains(executable)); |
| 2217 | |
| 2218 | PromotedHeapLocation activation(FunctionActivationPLoc, allocation.identifier()); |
| 2219 | ASSERT(locations.contains(activation)); |
| 2220 | |
| 2221 | node->child1() = Edge(resolve(block, activation), KnownCellUse); |
| 2222 | break; |
| 2223 | } |
| 2224 | |
| 2225 | case NewRegexp: { |
| 2226 | Vector<PromotedHeapLocation> locations = m_locationsForAllocation.get(escapee); |
| 2227 | ASSERT(locations.size() == 2); |
| 2228 | |
| 2229 | PromotedHeapLocation regExp(RegExpObjectRegExpPLoc, allocation.identifier()); |
| 2230 | ASSERT_UNUSED(regExp, locations.contains(regExp)); |
| 2231 | |
| 2232 | PromotedHeapLocation lastIndex(RegExpObjectLastIndexPLoc, allocation.identifier()); |
| 2233 | ASSERT(locations.contains(lastIndex)); |
| 2234 | Node* value = resolve(block, lastIndex); |
| 2235 | if (m_sinkCandidates.contains(value)) |
| 2236 | node->child1() = Edge(m_bottom); |
| 2237 | else |
| 2238 | node->child1() = Edge(value); |
| 2239 | break; |
| 2240 | } |
| 2241 | |
| 2242 | default: |
| 2243 | DFG_CRASH(m_graph, node, "Bad materialize op" ); |
| 2244 | } |
| 2245 | } |
| 2246 | |
| 2247 | Node* createRecovery(BasicBlock* block, PromotedHeapLocation location, Node* where, bool& canExit) |
| 2248 | { |
| 2249 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) |
| 2250 | dataLog("Recovering " , location, " at " , where, "\n" ); |
| 2251 | ASSERT(location.base()->isPhantomAllocation()); |
| 2252 | Node* base = getMaterialization(block, location.base()); |
| 2253 | Node* value = resolve(block, location); |
| 2254 | |
| 2255 | NodeOrigin origin = where->origin.withSemantic(base->origin.semantic); |
| 2256 | |
| 2257 | if (DFGObjectAllocationSinkingPhaseInternal::verbose) |
| 2258 | dataLog("Base is " , base, " and value is " , value, "\n" ); |
| 2259 | |
| 2260 | if (base->isPhantomAllocation()) { |
| 2261 | return PromotedHeapLocation(base, location.descriptor()).createHint( |
| 2262 | m_graph, origin.takeValidExit(canExit), value); |
| 2263 | } |
| 2264 | |
| 2265 | switch (location.kind()) { |
| 2266 | case NamedPropertyPLoc: { |
| 2267 | Allocation& allocation = m_heap.getAllocation(location.base()); |
| 2268 | |
| 2269 | Vector<RegisteredStructure> structures; |
| 2270 | structures.appendRange(allocation.structures().begin(), allocation.structures().end()); |
| 2271 | unsigned identifierNumber = location.info(); |
| 2272 | UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber]; |
| 2273 | |
| 2274 | std::sort( |
| 2275 | structures.begin(), |
| 2276 | structures.end(), |
| 2277 | [uid] (RegisteredStructure a, RegisteredStructure b) -> bool { |
| 2278 | return a->getConcurrently(uid) < b->getConcurrently(uid); |
| 2279 | }); |
| 2280 | |
| 2281 | RELEASE_ASSERT(structures.size()); |
| 2282 | PropertyOffset firstOffset = structures[0]->getConcurrently(uid); |
| 2283 | |
| 2284 | if (firstOffset == structures.last()->getConcurrently(uid)) { |
| 2285 | Node* storage = base; |
| 2286 | // FIXME: When we decide to sink objects with a |
| 2287 | // property storage, we should handle non-inline offsets. |
| 2288 | RELEASE_ASSERT(isInlineOffset(firstOffset)); |
| 2289 | |
| 2290 | StorageAccessData* data = m_graph.m_storageAccessData.add(); |
| 2291 | data->offset = firstOffset; |
| 2292 | data->identifierNumber = identifierNumber; |
| 2293 | |
| 2294 | return m_graph.addNode( |
| 2295 | PutByOffset, |
| 2296 | origin.takeValidExit(canExit), |
| 2297 | OpInfo(data), |
| 2298 | Edge(storage, KnownCellUse), |
| 2299 | Edge(base, KnownCellUse), |
| 2300 | value->defaultEdge()); |
| 2301 | } |
| 2302 | |
| 2303 | MultiPutByOffsetData* data = m_graph.m_multiPutByOffsetData.add(); |
| 2304 | data->identifierNumber = identifierNumber; |
| 2305 | |
| 2306 | { |
| 2307 | PropertyOffset currentOffset = firstOffset; |
| 2308 | StructureSet currentSet; |
| 2309 | for (RegisteredStructure structure : structures) { |
| 2310 | PropertyOffset offset = structure->getConcurrently(uid); |
| 2311 | if (offset != currentOffset) { |
| 2312 | // Because our analysis treats MultiPutByOffset like an escape, we only have to |
| 2313 | // deal with storing results that would have been previously stored by PutByOffset |
| 2314 | // nodes. Those nodes were guarded by the appropriate type checks. This means that |
| 2315 | // at this point, we can simply trust that the incoming value has the right type |
| 2316 | // for whatever structure we are using. |
| 2317 | data->variants.append( |
| 2318 | PutByIdVariant::replace(currentSet, currentOffset)); |
| 2319 | currentOffset = offset; |
| 2320 | currentSet.clear(); |
| 2321 | } |
| 2322 | currentSet.add(structure.get()); |
| 2323 | } |
| 2324 | data->variants.append( |
| 2325 | PutByIdVariant::replace(currentSet, currentOffset)); |
| 2326 | } |
| 2327 | |
| 2328 | return m_graph.addNode( |
| 2329 | MultiPutByOffset, |
| 2330 | origin.takeValidExit(canExit), |
| 2331 | OpInfo(data), |
| 2332 | Edge(base, KnownCellUse), |
| 2333 | value->defaultEdge()); |
| 2334 | } |
| 2335 | |
| 2336 | case ClosureVarPLoc: { |
| 2337 | return m_graph.addNode( |
| 2338 | PutClosureVar, |
| 2339 | origin.takeValidExit(canExit), |
| 2340 | OpInfo(location.info()), |
| 2341 | Edge(base, KnownCellUse), |
| 2342 | value->defaultEdge()); |
| 2343 | } |
| 2344 | |
| 2345 | case RegExpObjectLastIndexPLoc: { |
| 2346 | return m_graph.addNode( |
| 2347 | SetRegExpObjectLastIndex, |
| 2348 | origin.takeValidExit(canExit), |
| 2349 | OpInfo(true), |
| 2350 | Edge(base, KnownCellUse), |
| 2351 | value->defaultEdge()); |
| 2352 | } |
| 2353 | |
| 2354 | default: |
| 2355 | DFG_CRASH(m_graph, base, "Bad location kind" ); |
| 2356 | break; |
| 2357 | } |
| 2358 | |
| 2359 | RELEASE_ASSERT_NOT_REACHED(); |
| 2360 | } |
| 2361 | |
| 2362 | void removeICStatusFilters() |
| 2363 | { |
| 2364 | for (BasicBlock* block : m_graph.blocksInNaturalOrder()) { |
| 2365 | for (Node* node : *block) { |
| 2366 | switch (node->op()) { |
| 2367 | case FilterCallLinkStatus: |
| 2368 | case FilterGetByIdStatus: |
| 2369 | case FilterPutByIdStatus: |
| 2370 | case FilterInByIdStatus: |
| 2371 | if (node->child1()->isPhantomAllocation()) |
| 2372 | node->removeWithoutChecks(); |
| 2373 | break; |
| 2374 | default: |
| 2375 | break; |
| 2376 | } |
| 2377 | } |
| 2378 | } |
| 2379 | } |
| 2380 | |
| 2381 | // This is a great way of asking value->isStillValid() without having to worry about getting |
| 2382 | // different answers. It turns out that this analysis works OK regardless of what this |
| 2383 | // returns but breaks badly if this changes its mind for any particular InferredValue. This |
| 2384 | // method protects us from that. |
| 2385 | bool isStillValid(InferredValue* value) |
| 2386 | { |
| 2387 | return m_validInferredValues.add(value, value->isStillValid()).iterator->value; |
| 2388 | } |
| 2389 | |
| 2390 | SSACalculator ; |
| 2391 | SSACalculator m_allocationSSA; |
| 2392 | NodeSet m_sinkCandidates; |
| 2393 | HashMap<PromotedHeapLocation, SSACalculator::Variable*> m_locationToVariable; |
| 2394 | HashMap<Node*, SSACalculator::Variable*> m_nodeToVariable; |
| 2395 | HashMap<PromotedHeapLocation, Node*> m_localMapping; |
| 2396 | HashMap<Node*, Node*> m_escapeeToMaterialization; |
| 2397 | InsertionSet m_insertionSet; |
| 2398 | CombinedLiveness m_combinedLiveness; |
| 2399 | |
| 2400 | HashMap<InferredValue*, bool> m_validInferredValues; |
| 2401 | |
| 2402 | HashMap<Node*, Node*> m_materializationToEscapee; |
| 2403 | HashMap<Node*, Vector<Node*>> m_materializationSiteToMaterializations; |
| 2404 | HashMap<Node*, Vector<PromotedHeapLocation>> m_materializationSiteToRecoveries; |
| 2405 | HashMap<Node*, Vector<std::pair<PromotedHeapLocation, Node*>>> m_materializationSiteToHints; |
| 2406 | |
| 2407 | HashMap<Node*, Vector<PromotedHeapLocation>> m_locationsForAllocation; |
| 2408 | |
| 2409 | BlockMap<LocalHeap> m_heapAtHead; |
| 2410 | BlockMap<LocalHeap> m_heapAtTail; |
| 2411 | LocalHeap m_heap; |
| 2412 | |
| 2413 | Node* m_bottom = nullptr; |
| 2414 | }; |
| 2415 | |
| 2416 | } |
| 2417 | |
| 2418 | bool performObjectAllocationSinking(Graph& graph) |
| 2419 | { |
| 2420 | return runPhase<ObjectAllocationSinkingPhase>(graph); |
| 2421 | } |
| 2422 | |
| 2423 | } } // namespace JSC::DFG |
| 2424 | |
| 2425 | #endif // ENABLE(DFG_JIT) |
| 2426 | |