| 1 | /* |
| 2 | * Copyright (C) 2011-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "DFGCSEPhase.h" |
| 28 | |
| 29 | #if ENABLE(DFG_JIT) |
| 30 | |
| 31 | #include "DFGAbstractHeap.h" |
| 32 | #include "DFGBlockMapInlines.h" |
| 33 | #include "DFGClobberSet.h" |
| 34 | #include "DFGClobberize.h" |
| 35 | #include "DFGDominators.h" |
| 36 | #include "DFGGraph.h" |
| 37 | #include "DFGPhase.h" |
| 38 | #include "JSCInlines.h" |
| 39 | #include <array> |
| 40 | |
| 41 | namespace JSC { namespace DFG { |
| 42 | |
| 43 | // This file contains two CSE implementations: local and global. LocalCSE typically runs when we're |
| 44 | // in DFG mode, i.e. we want to compile quickly. LocalCSE contains a lot of optimizations for |
| 45 | // compile time. GlobalCSE, on the other hand, is fairly straight-forward. It will find more |
| 46 | // optimization opportunities by virtue of being global. |
| 47 | |
| 48 | namespace { |
| 49 | |
| 50 | namespace DFGCSEPhaseInternal { |
| 51 | static const bool verbose = false; |
| 52 | } |
| 53 | |
| 54 | class ImpureDataSlot { |
| 55 | WTF_MAKE_NONCOPYABLE(ImpureDataSlot); |
| 56 | WTF_MAKE_FAST_ALLOCATED; |
| 57 | public: |
| 58 | ImpureDataSlot(HeapLocation key, LazyNode value, unsigned hash) |
| 59 | : key(key), value(value), hash(hash) |
| 60 | { } |
| 61 | |
| 62 | HeapLocation key; |
| 63 | LazyNode value; |
| 64 | unsigned hash; |
| 65 | }; |
| 66 | |
| 67 | struct ImpureDataSlotHash : public DefaultHash<std::unique_ptr<ImpureDataSlot>>::Hash { |
| 68 | static unsigned hash(const std::unique_ptr<ImpureDataSlot>& key) |
| 69 | { |
| 70 | return key->hash; |
| 71 | } |
| 72 | |
| 73 | static bool equal(const std::unique_ptr<ImpureDataSlot>& a, const std::unique_ptr<ImpureDataSlot>& b) |
| 74 | { |
| 75 | // The ImpureDataSlot are unique per table per HeapLocation. This lets us compare the key |
| 76 | // by just comparing the pointers of the unique ImpureDataSlots. |
| 77 | ASSERT(a != b || a->key == b->key); |
| 78 | return a == b; |
| 79 | } |
| 80 | }; |
| 81 | |
| 82 | struct ImpureDataTranslator { |
| 83 | static unsigned hash(const HeapLocation& key) |
| 84 | { |
| 85 | return key.hash(); |
| 86 | } |
| 87 | |
| 88 | static bool equal(const std::unique_ptr<ImpureDataSlot>& slot, const HeapLocation& key) |
| 89 | { |
| 90 | if (!slot) |
| 91 | return false; |
| 92 | if (HashTraits<std::unique_ptr<ImpureDataSlot>>::isDeletedValue(slot)) |
| 93 | return false; |
| 94 | return slot->key == key; |
| 95 | } |
| 96 | |
| 97 | static void translate(std::unique_ptr<ImpureDataSlot>& slot, const HeapLocation& key, unsigned hashCode) |
| 98 | { |
| 99 | new (NotNull, std::addressof(slot)) std::unique_ptr<ImpureDataSlot>(new ImpureDataSlot {key, LazyNode(), hashCode}); |
| 100 | } |
| 101 | }; |
| 102 | |
| 103 | class ImpureMap { |
| 104 | WTF_MAKE_FAST_ALLOCATED; |
| 105 | WTF_MAKE_NONCOPYABLE(ImpureMap); |
| 106 | public: |
| 107 | ImpureMap() = default; |
| 108 | |
| 109 | ImpureMap(ImpureMap&& other) |
| 110 | { |
| 111 | m_abstractHeapStackMap.swap(other.m_abstractHeapStackMap); |
| 112 | m_fallbackStackMap.swap(other.m_fallbackStackMap); |
| 113 | m_heapMap.swap(other.m_heapMap); |
| 114 | #if !defined(NDEBUG) |
| 115 | m_debugImpureData.swap(other.m_debugImpureData); |
| 116 | #endif |
| 117 | } |
| 118 | |
| 119 | const ImpureDataSlot* add(const HeapLocation& location, const LazyNode& node) |
| 120 | { |
| 121 | const ImpureDataSlot* result = addImpl(location, node); |
| 122 | |
| 123 | #if !defined(NDEBUG) |
| 124 | auto addResult = m_debugImpureData.add(location, node); |
| 125 | ASSERT(!!result == !addResult.isNewEntry); |
| 126 | #endif |
| 127 | return result; |
| 128 | } |
| 129 | |
| 130 | LazyNode get(const HeapLocation& location) const |
| 131 | { |
| 132 | LazyNode result = getImpl(location); |
| 133 | #if !defined(NDEBUG) |
| 134 | ASSERT(result == m_debugImpureData.get(location)); |
| 135 | #endif |
| 136 | return result; |
| 137 | } |
| 138 | |
| 139 | void clobber(AbstractHeap heap) |
| 140 | { |
| 141 | switch (heap.kind()) { |
| 142 | case World: { |
| 143 | clear(); |
| 144 | break; |
| 145 | } |
| 146 | case SideState: |
| 147 | break; |
| 148 | case Stack: { |
| 149 | ASSERT(!heap.payload().isTop()); |
| 150 | ASSERT(heap.payload().value() == heap.payload().value32()); |
| 151 | m_abstractHeapStackMap.remove(heap.payload().value32()); |
| 152 | clobber(m_fallbackStackMap, heap); |
| 153 | break; |
| 154 | } |
| 155 | default: |
| 156 | clobber(m_heapMap, heap); |
| 157 | break; |
| 158 | } |
| 159 | #if !defined(NDEBUG) |
| 160 | m_debugImpureData.removeIf([heap](const HashMap<HeapLocation, LazyNode>::KeyValuePairType& pair) -> bool { |
| 161 | return heap.overlaps(pair.key.heap()); |
| 162 | }); |
| 163 | ASSERT(m_debugImpureData.size() |
| 164 | == (m_heapMap.size() |
| 165 | + m_abstractHeapStackMap.size() |
| 166 | + m_fallbackStackMap.size())); |
| 167 | |
| 168 | const bool verifyClobber = false; |
| 169 | if (verifyClobber) { |
| 170 | for (auto& pair : m_debugImpureData) |
| 171 | ASSERT(!!get(pair.key)); |
| 172 | } |
| 173 | #endif |
| 174 | } |
| 175 | |
| 176 | void clear() |
| 177 | { |
| 178 | m_abstractHeapStackMap.clear(); |
| 179 | m_fallbackStackMap.clear(); |
| 180 | m_heapMap.clear(); |
| 181 | #if !defined(NDEBUG) |
| 182 | m_debugImpureData.clear(); |
| 183 | #endif |
| 184 | } |
| 185 | |
| 186 | private: |
| 187 | typedef HashSet<std::unique_ptr<ImpureDataSlot>, ImpureDataSlotHash> Map; |
| 188 | |
| 189 | const ImpureDataSlot* addImpl(const HeapLocation& location, const LazyNode& node) |
| 190 | { |
| 191 | switch (location.heap().kind()) { |
| 192 | case World: |
| 193 | case SideState: |
| 194 | RELEASE_ASSERT_NOT_REACHED(); |
| 195 | case Stack: { |
| 196 | AbstractHeap abstractHeap = location.heap(); |
| 197 | if (abstractHeap.payload().isTop()) |
| 198 | return add(m_fallbackStackMap, location, node); |
| 199 | ASSERT(abstractHeap.payload().value() == abstractHeap.payload().value32()); |
| 200 | auto addResult = m_abstractHeapStackMap.add(abstractHeap.payload().value32(), nullptr); |
| 201 | if (addResult.isNewEntry) { |
| 202 | addResult.iterator->value.reset(new ImpureDataSlot {location, node, 0}); |
| 203 | return nullptr; |
| 204 | } |
| 205 | if (addResult.iterator->value->key == location) |
| 206 | return addResult.iterator->value.get(); |
| 207 | return add(m_fallbackStackMap, location, node); |
| 208 | } |
| 209 | default: |
| 210 | return add(m_heapMap, location, node); |
| 211 | } |
| 212 | return nullptr; |
| 213 | } |
| 214 | |
| 215 | LazyNode getImpl(const HeapLocation& location) const |
| 216 | { |
| 217 | switch (location.heap().kind()) { |
| 218 | case World: |
| 219 | case SideState: |
| 220 | RELEASE_ASSERT_NOT_REACHED(); |
| 221 | case Stack: { |
| 222 | ASSERT(location.heap().payload().value() == location.heap().payload().value32()); |
| 223 | auto iterator = m_abstractHeapStackMap.find(location.heap().payload().value32()); |
| 224 | if (iterator != m_abstractHeapStackMap.end() |
| 225 | && iterator->value->key == location) |
| 226 | return iterator->value->value; |
| 227 | return get(m_fallbackStackMap, location); |
| 228 | } |
| 229 | default: |
| 230 | return get(m_heapMap, location); |
| 231 | } |
| 232 | return LazyNode(); |
| 233 | } |
| 234 | |
| 235 | static const ImpureDataSlot* add(Map& map, const HeapLocation& location, const LazyNode& node) |
| 236 | { |
| 237 | auto result = map.add<ImpureDataTranslator>(location); |
| 238 | if (result.isNewEntry) { |
| 239 | (*result.iterator)->value = node; |
| 240 | return nullptr; |
| 241 | } |
| 242 | return result.iterator->get(); |
| 243 | } |
| 244 | |
| 245 | static LazyNode get(const Map& map, const HeapLocation& location) |
| 246 | { |
| 247 | auto iterator = map.find<ImpureDataTranslator>(location); |
| 248 | if (iterator != map.end()) |
| 249 | return (*iterator)->value; |
| 250 | return LazyNode(); |
| 251 | } |
| 252 | |
| 253 | static void clobber(Map& map, AbstractHeap heap) |
| 254 | { |
| 255 | map.removeIf([heap](const std::unique_ptr<ImpureDataSlot>& slot) -> bool { |
| 256 | return heap.overlaps(slot->key.heap()); |
| 257 | }); |
| 258 | } |
| 259 | |
| 260 | // The majority of Impure Stack Slots are unique per value. |
| 261 | // This is very useful for fast clobber(), we can just remove the slot addressed by AbstractHeap |
| 262 | // in O(1). |
| 263 | // |
| 264 | // When there are conflict, any additional HeapLocation is added in the fallback map. |
| 265 | // This works well because fallbackStackMap remains tiny. |
| 266 | // |
| 267 | // One cannot assume a unique ImpureData is in m_abstractHeapStackMap. It may have been |
| 268 | // a duplicate in the past and now only live in m_fallbackStackMap. |
| 269 | // |
| 270 | // Obviously, TOP always goes into m_fallbackStackMap since it does not have a unique value. |
| 271 | HashMap<int32_t, std::unique_ptr<ImpureDataSlot>, DefaultHash<int32_t>::Hash, WTF::SignedWithZeroKeyHashTraits<int32_t>> m_abstractHeapStackMap; |
| 272 | Map m_fallbackStackMap; |
| 273 | |
| 274 | Map m_heapMap; |
| 275 | |
| 276 | #if !defined(NDEBUG) |
| 277 | HashMap<HeapLocation, LazyNode> m_debugImpureData; |
| 278 | #endif |
| 279 | }; |
| 280 | |
| 281 | class LocalCSEPhase : public Phase { |
| 282 | public: |
| 283 | LocalCSEPhase(Graph& graph) |
| 284 | : Phase(graph, "local common subexpression elimination" ) |
| 285 | , m_smallBlock(graph) |
| 286 | , m_largeBlock(graph) |
| 287 | { |
| 288 | } |
| 289 | |
| 290 | bool run() |
| 291 | { |
| 292 | ASSERT(m_graph.m_fixpointState == FixpointNotConverged); |
| 293 | ASSERT(m_graph.m_form == ThreadedCPS || m_graph.m_form == LoadStore); |
| 294 | |
| 295 | bool changed = false; |
| 296 | |
| 297 | m_graph.clearReplacements(); |
| 298 | |
| 299 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
| 300 | BasicBlock* block = m_graph.block(blockIndex); |
| 301 | if (!block) |
| 302 | continue; |
| 303 | |
| 304 | if (block->size() <= SmallMaps::capacity) |
| 305 | changed |= m_smallBlock.run(block); |
| 306 | else |
| 307 | changed |= m_largeBlock.run(block); |
| 308 | } |
| 309 | |
| 310 | return changed; |
| 311 | } |
| 312 | |
| 313 | private: |
| 314 | class SmallMaps { |
| 315 | public: |
| 316 | // This permits SmallMaps to be used for blocks that have up to 100 nodes. In practice, |
| 317 | // fewer than half of the nodes in a block have pure defs, and even fewer have impure defs. |
| 318 | // Thus, a capacity limit of 100 probably means that somewhere around ~40 things may end up |
| 319 | // in one of these "small" list-based maps. That number still seems largeish, except that |
| 320 | // the overhead of HashMaps can be quite high currently: clearing them, or even removing |
| 321 | // enough things from them, deletes (or resizes) their backing store eagerly. Hence |
| 322 | // HashMaps induce a lot of malloc traffic. |
| 323 | static const unsigned capacity = 100; |
| 324 | |
| 325 | SmallMaps() |
| 326 | : m_pureLength(0) |
| 327 | , m_impureLength(0) |
| 328 | { |
| 329 | } |
| 330 | |
| 331 | void clear() |
| 332 | { |
| 333 | m_pureLength = 0; |
| 334 | m_impureLength = 0; |
| 335 | } |
| 336 | |
| 337 | void write(AbstractHeap heap) |
| 338 | { |
| 339 | if (heap.kind() == SideState) |
| 340 | return; |
| 341 | |
| 342 | for (unsigned i = 0; i < m_impureLength; ++i) { |
| 343 | if (heap.overlaps(m_impureMap[i].key.heap())) |
| 344 | m_impureMap[i--] = m_impureMap[--m_impureLength]; |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | Node* addPure(PureValue value, Node* node) |
| 349 | { |
| 350 | for (unsigned i = m_pureLength; i--;) { |
| 351 | if (m_pureMap[i].key == value) |
| 352 | return m_pureMap[i].value; |
| 353 | } |
| 354 | |
| 355 | ASSERT(m_pureLength < capacity); |
| 356 | m_pureMap[m_pureLength++] = WTF::KeyValuePair<PureValue, Node*>(value, node); |
| 357 | return nullptr; |
| 358 | } |
| 359 | |
| 360 | LazyNode findReplacement(HeapLocation location) |
| 361 | { |
| 362 | for (unsigned i = m_impureLength; i--;) { |
| 363 | if (m_impureMap[i].key == location) |
| 364 | return m_impureMap[i].value; |
| 365 | } |
| 366 | return nullptr; |
| 367 | } |
| 368 | |
| 369 | LazyNode addImpure(HeapLocation location, LazyNode node) |
| 370 | { |
| 371 | // FIXME: If we are using small maps, we must not def() derived values. |
| 372 | // For now the only derived values we def() are constant-based. |
| 373 | if (location.index() && !location.index().isNode()) |
| 374 | return nullptr; |
| 375 | if (LazyNode result = findReplacement(location)) |
| 376 | return result; |
| 377 | ASSERT(m_impureLength < capacity); |
| 378 | m_impureMap[m_impureLength++] = WTF::KeyValuePair<HeapLocation, LazyNode>(location, node); |
| 379 | return nullptr; |
| 380 | } |
| 381 | |
| 382 | private: |
| 383 | WTF::KeyValuePair<PureValue, Node*> m_pureMap[capacity]; |
| 384 | WTF::KeyValuePair<HeapLocation, LazyNode> m_impureMap[capacity]; |
| 385 | unsigned m_pureLength; |
| 386 | unsigned m_impureLength; |
| 387 | }; |
| 388 | |
| 389 | class LargeMaps { |
| 390 | public: |
| 391 | LargeMaps() |
| 392 | { |
| 393 | } |
| 394 | |
| 395 | void clear() |
| 396 | { |
| 397 | m_pureMap.clear(); |
| 398 | m_impureMap.clear(); |
| 399 | } |
| 400 | |
| 401 | void write(AbstractHeap heap) |
| 402 | { |
| 403 | m_impureMap.clobber(heap); |
| 404 | } |
| 405 | |
| 406 | Node* addPure(PureValue value, Node* node) |
| 407 | { |
| 408 | auto result = m_pureMap.add(value, node); |
| 409 | if (result.isNewEntry) |
| 410 | return nullptr; |
| 411 | return result.iterator->value; |
| 412 | } |
| 413 | |
| 414 | LazyNode findReplacement(HeapLocation location) |
| 415 | { |
| 416 | return m_impureMap.get(location); |
| 417 | } |
| 418 | |
| 419 | LazyNode addImpure(const HeapLocation& location, const LazyNode& node) |
| 420 | { |
| 421 | if (const ImpureDataSlot* slot = m_impureMap.add(location, node)) |
| 422 | return slot->value; |
| 423 | return LazyNode(); |
| 424 | } |
| 425 | |
| 426 | private: |
| 427 | HashMap<PureValue, Node*> m_pureMap; |
| 428 | ImpureMap m_impureMap; |
| 429 | }; |
| 430 | |
| 431 | template<typename Maps> |
| 432 | class BlockCSE { |
| 433 | public: |
| 434 | BlockCSE(Graph& graph) |
| 435 | : m_graph(graph) |
| 436 | , m_insertionSet(graph) |
| 437 | { |
| 438 | } |
| 439 | |
| 440 | bool run(BasicBlock* block) |
| 441 | { |
| 442 | m_maps.clear(); |
| 443 | m_changed = false; |
| 444 | m_block = block; |
| 445 | |
| 446 | for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { |
| 447 | m_node = block->at(nodeIndex); |
| 448 | m_graph.performSubstitution(m_node); |
| 449 | |
| 450 | if (m_node->op() == Identity || m_node->op() == IdentityWithProfile) { |
| 451 | m_node->replaceWith(m_graph, m_node->child1().node()); |
| 452 | m_changed = true; |
| 453 | } else { |
| 454 | // This rule only makes sense for local CSE, since in SSA form we have already |
| 455 | // factored the bounds check out of the PutByVal. It's kind of gross, but we |
| 456 | // still have reason to believe that PutByValAlias is a good optimization and |
| 457 | // that it's better to do it with a single node rather than separating out the |
| 458 | // CheckInBounds. |
| 459 | if (m_node->op() == PutByVal || m_node->op() == PutByValDirect) { |
| 460 | HeapLocation heap; |
| 461 | |
| 462 | Node* base = m_graph.varArgChild(m_node, 0).node(); |
| 463 | Node* index = m_graph.varArgChild(m_node, 1).node(); |
| 464 | LocationKind indexedPropertyLoc = indexedPropertyLocForResultType(m_node->result()); |
| 465 | |
| 466 | ArrayMode mode = m_node->arrayMode(); |
| 467 | switch (mode.type()) { |
| 468 | case Array::Int32: |
| 469 | if (!mode.isInBounds()) |
| 470 | break; |
| 471 | heap = HeapLocation(indexedPropertyLoc, IndexedInt32Properties, base, index); |
| 472 | break; |
| 473 | |
| 474 | case Array::Double: { |
| 475 | if (!mode.isInBounds()) |
| 476 | break; |
| 477 | LocationKind kind = mode.isSaneChain() ? IndexedPropertyDoubleSaneChainLoc : IndexedPropertyDoubleLoc; |
| 478 | heap = HeapLocation(kind, IndexedDoubleProperties, base, index); |
| 479 | break; |
| 480 | } |
| 481 | |
| 482 | case Array::Contiguous: |
| 483 | if (!mode.isInBounds()) |
| 484 | break; |
| 485 | heap = HeapLocation(indexedPropertyLoc, IndexedContiguousProperties, base, index); |
| 486 | break; |
| 487 | |
| 488 | case Array::Int8Array: |
| 489 | case Array::Int16Array: |
| 490 | case Array::Int32Array: |
| 491 | case Array::Uint8Array: |
| 492 | case Array::Uint8ClampedArray: |
| 493 | case Array::Uint16Array: |
| 494 | case Array::Uint32Array: |
| 495 | case Array::Float32Array: |
| 496 | case Array::Float64Array: |
| 497 | if (!mode.isInBounds()) |
| 498 | break; |
| 499 | heap = HeapLocation( |
| 500 | indexedPropertyLoc, TypedArrayProperties, base, index); |
| 501 | break; |
| 502 | |
| 503 | default: |
| 504 | break; |
| 505 | } |
| 506 | |
| 507 | if (!!heap && m_maps.findReplacement(heap)) |
| 508 | m_node->setOp(PutByValAlias); |
| 509 | } |
| 510 | |
| 511 | clobberize(m_graph, m_node, *this); |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | m_insertionSet.execute(block); |
| 516 | |
| 517 | return m_changed; |
| 518 | } |
| 519 | |
| 520 | void read(AbstractHeap) { } |
| 521 | |
| 522 | void write(AbstractHeap heap) |
| 523 | { |
| 524 | m_maps.write(heap); |
| 525 | } |
| 526 | |
| 527 | void def(PureValue value) |
| 528 | { |
| 529 | Node* match = m_maps.addPure(value, m_node); |
| 530 | if (!match) |
| 531 | return; |
| 532 | |
| 533 | m_node->replaceWith(m_graph, match); |
| 534 | m_changed = true; |
| 535 | } |
| 536 | |
| 537 | void def(const HeapLocation& location, const LazyNode& value) |
| 538 | { |
| 539 | LazyNode match = m_maps.addImpure(location, value); |
| 540 | if (!match) |
| 541 | return; |
| 542 | |
| 543 | if (m_node->op() == GetLocal) { |
| 544 | // Usually the CPS rethreading phase does this. But it's OK for us to mess with |
| 545 | // locals so long as: |
| 546 | // |
| 547 | // - We dethread the graph. Any changes we make may invalidate the assumptions of |
| 548 | // our CPS form, particularly if this GetLocal is linked to the variablesAtTail. |
| 549 | // |
| 550 | // - We don't introduce a Phantom for the child of the GetLocal. This wouldn't be |
| 551 | // totally wrong but it would pessimize the code. Just because there is a |
| 552 | // GetLocal doesn't mean that the child was live. Simply rerouting the all uses |
| 553 | // of this GetLocal will preserve the live-at-exit information just fine. |
| 554 | // |
| 555 | // We accomplish the latter by just clearing the child; then the Phantom that we |
| 556 | // introduce won't have children and so it will eventually just be deleted. |
| 557 | |
| 558 | m_node->child1() = Edge(); |
| 559 | m_graph.dethread(); |
| 560 | } |
| 561 | |
| 562 | if (value.isNode() && value.asNode() == m_node) { |
| 563 | match.ensureIsNode(m_insertionSet, m_block, 0)->owner = m_block; |
| 564 | ASSERT(match.isNode()); |
| 565 | m_node->replaceWith(m_graph, match.asNode()); |
| 566 | m_changed = true; |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | private: |
| 571 | Graph& m_graph; |
| 572 | |
| 573 | bool m_changed; |
| 574 | Node* m_node; |
| 575 | BasicBlock* m_block; |
| 576 | |
| 577 | Maps m_maps; |
| 578 | |
| 579 | InsertionSet m_insertionSet; |
| 580 | }; |
| 581 | |
| 582 | BlockCSE<SmallMaps> m_smallBlock; |
| 583 | BlockCSE<LargeMaps> m_largeBlock; |
| 584 | }; |
| 585 | |
| 586 | class GlobalCSEPhase : public Phase { |
| 587 | public: |
| 588 | GlobalCSEPhase(Graph& graph) |
| 589 | : Phase(graph, "global common subexpression elimination" ) |
| 590 | , m_impureDataMap(graph) |
| 591 | , m_insertionSet(graph) |
| 592 | { |
| 593 | } |
| 594 | |
| 595 | bool run() |
| 596 | { |
| 597 | ASSERT(m_graph.m_fixpointState == FixpointNotConverged); |
| 598 | ASSERT(m_graph.m_form == SSA); |
| 599 | |
| 600 | m_graph.initializeNodeOwners(); |
| 601 | m_graph.ensureSSADominators(); |
| 602 | |
| 603 | m_preOrder = m_graph.blocksInPreOrder(); |
| 604 | |
| 605 | // First figure out what gets clobbered by blocks. Node that this uses the preOrder list |
| 606 | // for convenience only. |
| 607 | for (unsigned i = m_preOrder.size(); i--;) { |
| 608 | m_block = m_preOrder[i]; |
| 609 | m_impureData = &m_impureDataMap[m_block]; |
| 610 | for (unsigned nodeIndex = m_block->size(); nodeIndex--;) |
| 611 | addWrites(m_graph, m_block->at(nodeIndex), m_impureData->writes); |
| 612 | } |
| 613 | |
| 614 | // Based on my experience doing this before, what follows might have to be made iterative. |
| 615 | // Right now it doesn't have to be iterative because everything is dominator-bsed. But when |
| 616 | // validation is enabled, we check if iterating would find new CSE opportunities. |
| 617 | |
| 618 | bool changed = iterate(); |
| 619 | |
| 620 | // FIXME: It should be possible to assert that CSE will not find any new opportunities if you |
| 621 | // run it a second time. Unfortunately, we cannot assert this right now. Note that if we did |
| 622 | // this, we'd have to first reset all of our state. |
| 623 | // https://bugs.webkit.org/show_bug.cgi?id=145853 |
| 624 | |
| 625 | return changed; |
| 626 | } |
| 627 | |
| 628 | bool iterate() |
| 629 | { |
| 630 | if (DFGCSEPhaseInternal::verbose) |
| 631 | dataLog("Performing iteration.\n" ); |
| 632 | |
| 633 | m_changed = false; |
| 634 | m_graph.clearReplacements(); |
| 635 | |
| 636 | for (unsigned i = 0; i < m_preOrder.size(); ++i) { |
| 637 | m_block = m_preOrder[i]; |
| 638 | m_impureData = &m_impureDataMap[m_block]; |
| 639 | m_writesSoFar.clear(); |
| 640 | |
| 641 | if (DFGCSEPhaseInternal::verbose) |
| 642 | dataLog("Processing block " , *m_block, ":\n" ); |
| 643 | |
| 644 | for (unsigned nodeIndex = 0; nodeIndex < m_block->size(); ++nodeIndex) { |
| 645 | m_nodeIndex = nodeIndex; |
| 646 | m_node = m_block->at(nodeIndex); |
| 647 | if (DFGCSEPhaseInternal::verbose) |
| 648 | dataLog(" Looking at node " , m_node, ":\n" ); |
| 649 | |
| 650 | m_graph.performSubstitution(m_node); |
| 651 | |
| 652 | if (m_node->op() == Identity || m_node->op() == IdentityWithProfile) { |
| 653 | m_node->replaceWith(m_graph, m_node->child1().node()); |
| 654 | m_changed = true; |
| 655 | } else |
| 656 | clobberize(m_graph, m_node, *this); |
| 657 | } |
| 658 | |
| 659 | m_insertionSet.execute(m_block); |
| 660 | |
| 661 | m_impureData->didVisit = true; |
| 662 | } |
| 663 | |
| 664 | return m_changed; |
| 665 | } |
| 666 | |
| 667 | void read(AbstractHeap) { } |
| 668 | |
| 669 | void write(AbstractHeap heap) |
| 670 | { |
| 671 | m_impureData->availableAtTail.clobber(heap); |
| 672 | m_writesSoFar.add(heap); |
| 673 | } |
| 674 | |
| 675 | void def(PureValue value) |
| 676 | { |
| 677 | // With pure values we do not have to worry about the possibility of some control flow path |
| 678 | // clobbering the value. So, we just search for all of the like values that have been |
| 679 | // computed. We pick one that is in a block that dominates ours. Note that this means that |
| 680 | // a PureValue will map to a list of nodes, since there may be many places in the control |
| 681 | // flow graph that compute a value but only one of them that dominates us. We may build up |
| 682 | // a large list of nodes that compute some value in the case of gnarly control flow. This |
| 683 | // is probably OK. |
| 684 | |
| 685 | auto result = m_pureValues.add(value, Vector<Node*>()); |
| 686 | if (result.isNewEntry) { |
| 687 | result.iterator->value.append(m_node); |
| 688 | return; |
| 689 | } |
| 690 | |
| 691 | for (unsigned i = result.iterator->value.size(); i--;) { |
| 692 | Node* candidate = result.iterator->value[i]; |
| 693 | if (m_graph.m_ssaDominators->dominates(candidate->owner, m_block)) { |
| 694 | m_node->replaceWith(m_graph, candidate); |
| 695 | m_changed = true; |
| 696 | return; |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | result.iterator->value.append(m_node); |
| 701 | } |
| 702 | |
| 703 | LazyNode findReplacement(HeapLocation location) |
| 704 | { |
| 705 | // At this instant, our "availableAtTail" reflects the set of things that are available in |
| 706 | // this block so far. We check this map to find block-local CSE opportunities before doing |
| 707 | // a global search. |
| 708 | LazyNode match = m_impureData->availableAtTail.get(location); |
| 709 | if (!!match) { |
| 710 | if (DFGCSEPhaseInternal::verbose) |
| 711 | dataLog(" Found local match: " , match, "\n" ); |
| 712 | return match; |
| 713 | } |
| 714 | |
| 715 | // If it's not available at this point in the block, and at some prior point in the block |
| 716 | // we have clobbered this heap location, then there is no point in doing a global search. |
| 717 | if (m_writesSoFar.overlaps(location.heap())) { |
| 718 | if (DFGCSEPhaseInternal::verbose) |
| 719 | dataLog(" Not looking globally because of local clobber: " , m_writesSoFar, "\n" ); |
| 720 | return nullptr; |
| 721 | } |
| 722 | |
| 723 | // This perfoms a backward search over the control flow graph to find some possible |
| 724 | // non-local def() that matches our heap location. Such a match is only valid if there does |
| 725 | // not exist any path from that def() to our block that contains a write() that overlaps |
| 726 | // our heap. This algorithm looks for both of these things (the matching def and the |
| 727 | // overlapping writes) in one backwards DFS pass. |
| 728 | // |
| 729 | // This starts by looking at the starting block's predecessors, and then it continues along |
| 730 | // their predecessors. As soon as this finds a possible def() - one that defines the heap |
| 731 | // location we want while dominating our starting block - it assumes that this one must be |
| 732 | // the match. It then lets the DFS over predecessors complete, but it doesn't add the |
| 733 | // def()'s predecessors; this ensures that any blocks we visit thereafter are on some path |
| 734 | // from the def() to us. As soon as the DFG finds a write() that overlaps the location's |
| 735 | // heap, it stops, assuming that there is no possible match. Note that the write() case may |
| 736 | // trigger before we find a def(), or after. Either way, the write() case causes this |
| 737 | // function to immediately return nullptr. |
| 738 | // |
| 739 | // If the write() is found before we find the def(), then we know that any def() we would |
| 740 | // find would have a path to us that trips over the write() and hence becomes invalid. This |
| 741 | // is just a direct outcome of us looking for a def() that dominates us. Given a block A |
| 742 | // that dominates block B - so that A is the one that would have the def() and B is our |
| 743 | // starting block - we know that any other block must either be on the path from A to B, or |
| 744 | // it must be on a path from the root to A, but not both. So, if we haven't found A yet but |
| 745 | // we already have found a block C that has a write(), then C must be on some path from A |
| 746 | // to B, which means that A's def() is invalid for our purposes. Hence, before we find the |
| 747 | // def(), stopping on write() is the right thing to do. |
| 748 | // |
| 749 | // Stopping on write() is also the right thing to do after we find the def(). After we find |
| 750 | // the def(), we don't add that block's predecessors to the search worklist. That means |
| 751 | // that henceforth the only blocks we will see in the search are blocks on the path from |
| 752 | // the def() to us. If any such block has a write() that clobbers our heap then we should |
| 753 | // give up. |
| 754 | // |
| 755 | // Hence this graph search algorithm ends up being deceptively simple: any overlapping |
| 756 | // write() causes us to immediately return nullptr, and a matching def() means that we just |
| 757 | // record it and neglect to visit its precessors. |
| 758 | |
| 759 | Vector<BasicBlock*, 8> worklist; |
| 760 | Vector<BasicBlock*, 8> seenList; |
| 761 | BitVector seen; |
| 762 | |
| 763 | for (unsigned i = m_block->predecessors.size(); i--;) { |
| 764 | BasicBlock* predecessor = m_block->predecessors[i]; |
| 765 | if (!seen.get(predecessor->index)) { |
| 766 | worklist.append(predecessor); |
| 767 | seen.set(predecessor->index); |
| 768 | } |
| 769 | } |
| 770 | |
| 771 | while (!worklist.isEmpty()) { |
| 772 | BasicBlock* block = worklist.takeLast(); |
| 773 | seenList.append(block); |
| 774 | |
| 775 | if (DFGCSEPhaseInternal::verbose) |
| 776 | dataLog(" Searching in block " , *block, "\n" ); |
| 777 | ImpureBlockData& data = m_impureDataMap[block]; |
| 778 | |
| 779 | // We require strict domination because this would only see things in our own block if |
| 780 | // they came *after* our position in the block. Clearly, while our block dominates |
| 781 | // itself, the things in the block after us don't dominate us. |
| 782 | if (m_graph.m_ssaDominators->strictlyDominates(block, m_block)) { |
| 783 | if (DFGCSEPhaseInternal::verbose) |
| 784 | dataLog(" It strictly dominates.\n" ); |
| 785 | DFG_ASSERT(m_graph, m_node, data.didVisit); |
| 786 | DFG_ASSERT(m_graph, m_node, !match); |
| 787 | match = data.availableAtTail.get(location); |
| 788 | if (DFGCSEPhaseInternal::verbose) |
| 789 | dataLog(" Availability: " , match, "\n" ); |
| 790 | if (!!match) { |
| 791 | // Don't examine the predecessors of a match. At this point we just want to |
| 792 | // establish that other blocks on the path from here to there don't clobber |
| 793 | // the location we're interested in. |
| 794 | continue; |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | if (DFGCSEPhaseInternal::verbose) |
| 799 | dataLog(" Dealing with write set " , data.writes, "\n" ); |
| 800 | if (data.writes.overlaps(location.heap())) { |
| 801 | if (DFGCSEPhaseInternal::verbose) |
| 802 | dataLog(" Clobbered.\n" ); |
| 803 | return nullptr; |
| 804 | } |
| 805 | |
| 806 | for (unsigned i = block->predecessors.size(); i--;) { |
| 807 | BasicBlock* predecessor = block->predecessors[i]; |
| 808 | if (!seen.get(predecessor->index)) { |
| 809 | worklist.append(predecessor); |
| 810 | seen.set(predecessor->index); |
| 811 | } |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | if (!match) |
| 816 | return nullptr; |
| 817 | |
| 818 | // Cache the results for next time. We cache them both for this block and for all of our |
| 819 | // predecessors, since even though we've already visited our predecessors, our predecessors |
| 820 | // probably have successors other than us. |
| 821 | // FIXME: Consider caching failed searches as well, when match is null. It's not clear that |
| 822 | // the reduction in compile time would warrant the increase in complexity, though. |
| 823 | // https://bugs.webkit.org/show_bug.cgi?id=134876 |
| 824 | for (BasicBlock* block : seenList) |
| 825 | m_impureDataMap[block].availableAtTail.add(location, match); |
| 826 | m_impureData->availableAtTail.add(location, match); |
| 827 | |
| 828 | return match; |
| 829 | } |
| 830 | |
| 831 | void def(HeapLocation location, LazyNode value) |
| 832 | { |
| 833 | if (DFGCSEPhaseInternal::verbose) |
| 834 | dataLog(" Got heap location def: " , location, " -> " , value, "\n" ); |
| 835 | |
| 836 | LazyNode match = findReplacement(location); |
| 837 | |
| 838 | if (DFGCSEPhaseInternal::verbose) |
| 839 | dataLog(" Got match: " , match, "\n" ); |
| 840 | |
| 841 | if (!match) { |
| 842 | if (DFGCSEPhaseInternal::verbose) |
| 843 | dataLog(" Adding at-tail mapping: " , location, " -> " , value, "\n" ); |
| 844 | auto result = m_impureData->availableAtTail.add(location, value); |
| 845 | ASSERT_UNUSED(result, !result); |
| 846 | return; |
| 847 | } |
| 848 | |
| 849 | if (value.isNode() && value.asNode() == m_node) { |
| 850 | if (!match.isNode()) { |
| 851 | // We need to properly record the constant in order to use an existing one if applicable. |
| 852 | // This ensures that re-running GCSE will not find new optimizations. |
| 853 | match.ensureIsNode(m_insertionSet, m_block, m_nodeIndex)->owner = m_block; |
| 854 | auto result = m_pureValues.add(PureValue(match.asNode(), match->constant()), Vector<Node*>()); |
| 855 | bool replaced = false; |
| 856 | if (!result.isNewEntry) { |
| 857 | for (unsigned i = result.iterator->value.size(); i--;) { |
| 858 | Node* candidate = result.iterator->value[i]; |
| 859 | if (m_graph.m_ssaDominators->dominates(candidate->owner, m_block)) { |
| 860 | ASSERT(candidate); |
| 861 | match->replaceWith(m_graph, candidate); |
| 862 | match.setNode(candidate); |
| 863 | replaced = true; |
| 864 | break; |
| 865 | } |
| 866 | } |
| 867 | } |
| 868 | if (!replaced) |
| 869 | result.iterator->value.append(match.asNode()); |
| 870 | } |
| 871 | ASSERT(match.asNode()); |
| 872 | m_node->replaceWith(m_graph, match.asNode()); |
| 873 | m_changed = true; |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | struct ImpureBlockData { |
| 878 | ImpureBlockData() |
| 879 | : didVisit(false) |
| 880 | { |
| 881 | } |
| 882 | |
| 883 | ClobberSet writes; |
| 884 | ImpureMap availableAtTail; |
| 885 | bool didVisit; |
| 886 | }; |
| 887 | |
| 888 | Vector<BasicBlock*> m_preOrder; |
| 889 | |
| 890 | PureMultiMap m_pureValues; |
| 891 | BlockMap<ImpureBlockData> m_impureDataMap; |
| 892 | |
| 893 | BasicBlock* m_block; |
| 894 | Node* m_node; |
| 895 | unsigned m_nodeIndex; |
| 896 | ImpureBlockData* m_impureData; |
| 897 | ClobberSet m_writesSoFar; |
| 898 | InsertionSet m_insertionSet; |
| 899 | |
| 900 | bool m_changed; |
| 901 | }; |
| 902 | |
| 903 | } // anonymous namespace |
| 904 | |
| 905 | bool performLocalCSE(Graph& graph) |
| 906 | { |
| 907 | return runPhase<LocalCSEPhase>(graph); |
| 908 | } |
| 909 | |
| 910 | bool performGlobalCSE(Graph& graph) |
| 911 | { |
| 912 | return runPhase<GlobalCSEPhase>(graph); |
| 913 | } |
| 914 | |
| 915 | } } // namespace JSC::DFG |
| 916 | |
| 917 | #endif // ENABLE(DFG_JIT) |
| 918 | |