| 1 | /* |
| 2 | * Copyright (C) 2011-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "DFGCFAPhase.h" |
| 28 | |
| 29 | #if ENABLE(DFG_JIT) |
| 30 | |
| 31 | #include "DFGAbstractInterpreterInlines.h" |
| 32 | #include "DFGBlockSet.h" |
| 33 | #include "DFGClobberSet.h" |
| 34 | #include "DFGClobberize.h" |
| 35 | #include "DFGGraph.h" |
| 36 | #include "DFGInPlaceAbstractState.h" |
| 37 | #include "DFGPhase.h" |
| 38 | #include "DFGSafeToExecute.h" |
| 39 | #include "OperandsInlines.h" |
| 40 | #include "JSCInlines.h" |
| 41 | |
| 42 | namespace JSC { namespace DFG { |
| 43 | |
| 44 | class CFAPhase : public Phase { |
| 45 | public: |
| 46 | CFAPhase(Graph& graph) |
| 47 | : Phase(graph, "control flow analysis" ) |
| 48 | , m_state(graph) |
| 49 | , m_interpreter(graph, m_state) |
| 50 | , m_verbose(Options::verboseCFA()) |
| 51 | { |
| 52 | } |
| 53 | |
| 54 | bool run() |
| 55 | { |
| 56 | ASSERT(m_graph.m_form == ThreadedCPS || m_graph.m_form == SSA); |
| 57 | ASSERT(m_graph.m_unificationState == GloballyUnified); |
| 58 | ASSERT(m_graph.m_refCountState == EverythingIsLive); |
| 59 | |
| 60 | m_count = 0; |
| 61 | |
| 62 | if (m_verbose && !shouldDumpGraphAtEachPhase(m_graph.m_plan.mode())) { |
| 63 | dataLog("Graph before CFA:\n" ); |
| 64 | m_graph.dump(); |
| 65 | } |
| 66 | |
| 67 | // This implements a pseudo-worklist-based forward CFA, except that the visit order |
| 68 | // of blocks is the bytecode program order (which is nearly topological), and |
| 69 | // instead of a worklist we just walk all basic blocks checking if cfaShouldRevisit |
| 70 | // is set to true. This is likely to balance the efficiency properties of both |
| 71 | // worklist-based and forward fixpoint-based approaches. Like a worklist-based |
| 72 | // approach, it won't visit code if it's meaningless to do so (nothing changed at |
| 73 | // the head of the block or the predecessors have not been visited). Like a forward |
| 74 | // fixpoint-based approach, it has a high probability of only visiting a block |
| 75 | // after all predecessors have been visited. Only loops will cause this analysis to |
| 76 | // revisit blocks, and the amount of revisiting is proportional to loop depth. |
| 77 | |
| 78 | m_state.initialize(); |
| 79 | |
| 80 | if (m_graph.m_form != SSA) { |
| 81 | if (m_verbose) |
| 82 | dataLog(" Widening state at OSR entry block.\n" ); |
| 83 | |
| 84 | // Widen the abstract values at the block that serves as the must-handle OSR entry. |
| 85 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
| 86 | BasicBlock* block = m_graph.block(blockIndex); |
| 87 | if (!block) |
| 88 | continue; |
| 89 | |
| 90 | if (!block->isOSRTarget) |
| 91 | continue; |
| 92 | if (block->bytecodeBegin != m_graph.m_plan.osrEntryBytecodeIndex()) |
| 93 | continue; |
| 94 | |
| 95 | // We record that the block needs some OSR stuff, but we don't do that yet. We want to |
| 96 | // handle OSR entry data at the right time in order to get the best compile times. If we |
| 97 | // simply injected OSR data right now, then we'd potentially cause a loop body to be |
| 98 | // interpreted with just the constants we feed it, which is more expensive than if we |
| 99 | // interpreted it with non-constant values. If we always injected this data after the |
| 100 | // main pass of CFA ran, then we would potentially spend a bunch of time rerunning CFA |
| 101 | // after convergence. So, we try very hard to inject OSR data for a block when we first |
| 102 | // naturally come to see it - see the m_blocksWithOSR check in performBlockCFA(). This |
| 103 | // way, we: |
| 104 | // |
| 105 | // - Reduce the likelihood of interpreting the block with constants, since we will inject |
| 106 | // the OSR entry constants on top of whatever abstract values we got for that block on |
| 107 | // the first pass. The mix of those two things is likely to not be constant. |
| 108 | // |
| 109 | // - Reduce the total number of CFA reexecutions since we inject the OSR data as part of |
| 110 | // the normal flow of CFA instead of having to do a second fixpoint. We may still have |
| 111 | // to do a second fixpoint if we don't even reach the OSR entry block during the main |
| 112 | // run of CFA, but in that case at least we're not being redundant. |
| 113 | m_blocksWithOSR.add(block); |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | do { |
| 118 | m_changed = false; |
| 119 | performForwardCFA(); |
| 120 | } while (m_changed); |
| 121 | |
| 122 | if (m_graph.m_form != SSA) { |
| 123 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
| 124 | BasicBlock* block = m_graph.block(blockIndex); |
| 125 | if (!block) |
| 126 | continue; |
| 127 | |
| 128 | if (m_blocksWithOSR.remove(block)) |
| 129 | m_changed |= injectOSR(block); |
| 130 | } |
| 131 | |
| 132 | while (m_changed) { |
| 133 | m_changed = false; |
| 134 | performForwardCFA(); |
| 135 | } |
| 136 | |
| 137 | // Make sure we record the intersection of all proofs that we ever allowed the |
| 138 | // compiler to rely upon. |
| 139 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
| 140 | BasicBlock* block = m_graph.block(blockIndex); |
| 141 | if (!block) |
| 142 | continue; |
| 143 | |
| 144 | block->intersectionOfCFAHasVisited &= block->cfaHasVisited; |
| 145 | for (unsigned i = block->intersectionOfPastValuesAtHead.size(); i--;) { |
| 146 | AbstractValue value = block->valuesAtHead[i]; |
| 147 | // We need to guarantee that when we do an OSR entry, we validate the incoming |
| 148 | // value as if it could be live past an invalidation point. Otherwise, we may |
| 149 | // OSR enter with a value with the wrong structure, and an InvalidationPoint's |
| 150 | // promise of filtering the structure set of certain values is no longer upheld. |
| 151 | value.m_structure.observeInvalidationPoint(); |
| 152 | block->intersectionOfPastValuesAtHead[i].filter(value); |
| 153 | } |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | return true; |
| 158 | } |
| 159 | |
| 160 | private: |
| 161 | bool injectOSR(BasicBlock* block) |
| 162 | { |
| 163 | if (m_verbose) |
| 164 | dataLog(" Found must-handle block: " , *block, "\n" ); |
| 165 | |
| 166 | // This merges snapshot of stack values while CFA phase want to have proven types and values. This is somewhat tricky. |
| 167 | // But this is OK as long as DFG OSR entry validates the inputs with *proven* AbstracValue values. And it turns out that this |
| 168 | // type widening is critical to navier-stokes. Without it, navier-stokes has more strict constraint on OSR entry and |
| 169 | // fails OSR entry repeatedly. |
| 170 | bool changed = false; |
| 171 | const Operands<Optional<JSValue>>& mustHandleValues = m_graph.m_plan.mustHandleValues(); |
| 172 | for (size_t i = mustHandleValues.size(); i--;) { |
| 173 | int operand = mustHandleValues.operandForIndex(i); |
| 174 | Optional<JSValue> value = mustHandleValues[i]; |
| 175 | if (!value) { |
| 176 | if (m_verbose) |
| 177 | dataLog(" Not live in bytecode: " , VirtualRegister(operand), "\n" ); |
| 178 | continue; |
| 179 | } |
| 180 | Node* node = block->variablesAtHead.operand(operand); |
| 181 | if (!node) { |
| 182 | if (m_verbose) |
| 183 | dataLog(" Not live: " , VirtualRegister(operand), "\n" ); |
| 184 | continue; |
| 185 | } |
| 186 | |
| 187 | if (m_verbose) |
| 188 | dataLog(" Widening " , VirtualRegister(operand), " with " , value.value(), "\n" ); |
| 189 | |
| 190 | AbstractValue& target = block->valuesAtHead.operand(operand); |
| 191 | changed |= target.mergeOSREntryValue(m_graph, value.value(), node->variableAccessData(), node); |
| 192 | } |
| 193 | |
| 194 | if (changed || !block->cfaHasVisited) { |
| 195 | block->cfaShouldRevisit = true; |
| 196 | return true; |
| 197 | } |
| 198 | |
| 199 | return false; |
| 200 | } |
| 201 | |
| 202 | void performBlockCFA(BasicBlock* block) |
| 203 | { |
| 204 | if (!block) |
| 205 | return; |
| 206 | if (!block->cfaShouldRevisit) |
| 207 | return; |
| 208 | if (m_verbose) |
| 209 | dataLog(" Block " , *block, ":\n" ); |
| 210 | |
| 211 | if (m_blocksWithOSR.remove(block)) |
| 212 | injectOSR(block); |
| 213 | |
| 214 | m_state.beginBasicBlock(block); |
| 215 | if (m_verbose) { |
| 216 | dataLog(" head vars: " , block->valuesAtHead, "\n" ); |
| 217 | if (m_graph.m_form == SSA) |
| 218 | dataLog(" head regs: " , nodeValuePairListDump(block->ssa->valuesAtHead), "\n" ); |
| 219 | } |
| 220 | for (unsigned i = 0; i < block->size(); ++i) { |
| 221 | Node* node = block->at(i); |
| 222 | if (m_verbose) { |
| 223 | dataLogF(" %s @%u: " , Graph::opName(node->op()), node->index()); |
| 224 | |
| 225 | if (!safeToExecute(m_state, m_graph, node)) |
| 226 | dataLog("(UNSAFE) " ); |
| 227 | |
| 228 | dataLog(m_state.variablesForDebugging(), " " , m_interpreter); |
| 229 | |
| 230 | dataLogF("\n" ); |
| 231 | } |
| 232 | if (!m_interpreter.execute(i)) { |
| 233 | if (m_verbose) |
| 234 | dataLogF(" Expect OSR exit.\n" ); |
| 235 | break; |
| 236 | } |
| 237 | |
| 238 | if (!ASSERT_DISABLED |
| 239 | && m_state.didClobberOrFolded() != writesOverlap(m_graph, node, JSCell_structureID)) |
| 240 | DFG_CRASH(m_graph, node, toCString("AI-clobberize disagreement; AI says " , m_state.clobberState(), " while clobberize says " , writeSet(m_graph, node)).data()); |
| 241 | } |
| 242 | if (m_verbose) { |
| 243 | dataLogF(" tail regs: " ); |
| 244 | m_interpreter.dump(WTF::dataFile()); |
| 245 | dataLogF("\n" ); |
| 246 | } |
| 247 | m_changed |= m_state.endBasicBlock(); |
| 248 | |
| 249 | if (m_verbose) { |
| 250 | dataLog(" tail vars: " , block->valuesAtTail, "\n" ); |
| 251 | if (m_graph.m_form == SSA) |
| 252 | dataLog(" head regs: " , nodeValuePairListDump(block->ssa->valuesAtTail), "\n" ); |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | void performForwardCFA() |
| 257 | { |
| 258 | ++m_count; |
| 259 | if (m_verbose) |
| 260 | dataLogF("CFA [%u]\n" , m_count); |
| 261 | |
| 262 | for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) |
| 263 | performBlockCFA(m_graph.block(blockIndex)); |
| 264 | } |
| 265 | |
| 266 | private: |
| 267 | InPlaceAbstractState m_state; |
| 268 | AbstractInterpreter<InPlaceAbstractState> m_interpreter; |
| 269 | BlockSet m_blocksWithOSR; |
| 270 | |
| 271 | bool m_verbose; |
| 272 | |
| 273 | bool m_changed; |
| 274 | unsigned m_count; |
| 275 | }; |
| 276 | |
| 277 | bool performCFA(Graph& graph) |
| 278 | { |
| 279 | return runPhase<CFAPhase>(graph); |
| 280 | } |
| 281 | |
| 282 | } } // namespace JSC::DFG |
| 283 | |
| 284 | #endif // ENABLE(DFG_JIT) |
| 285 | |