| 1 | /* |
| 2 | * Copyright (C) 2013-2015 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "DFGBackwardsPropagationPhase.h" |
| 28 | |
| 29 | #if ENABLE(DFG_JIT) |
| 30 | |
| 31 | #include "DFGBasicBlockInlines.h" |
| 32 | #include "DFGGraph.h" |
| 33 | #include "DFGPhase.h" |
| 34 | #include "JSCInlines.h" |
| 35 | |
| 36 | namespace JSC { namespace DFG { |
| 37 | |
| 38 | class BackwardsPropagationPhase : public Phase { |
| 39 | public: |
| 40 | BackwardsPropagationPhase(Graph& graph) |
| 41 | : Phase(graph, "backwards propagation" ) |
| 42 | { |
| 43 | } |
| 44 | |
| 45 | bool run() |
| 46 | { |
| 47 | m_changed = true; |
| 48 | while (m_changed) { |
| 49 | m_changed = false; |
| 50 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
| 51 | BasicBlock* block = m_graph.block(blockIndex); |
| 52 | if (!block) |
| 53 | continue; |
| 54 | |
| 55 | // Prevent a tower of overflowing additions from creating a value that is out of the |
| 56 | // safe 2^48 range. |
| 57 | m_allowNestedOverflowingAdditions = block->size() < (1 << 16); |
| 58 | |
| 59 | for (unsigned indexInBlock = block->size(); indexInBlock--;) |
| 60 | propagate(block->at(indexInBlock)); |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | return true; |
| 65 | } |
| 66 | |
| 67 | private: |
| 68 | bool isNotNegZero(Node* node) |
| 69 | { |
| 70 | if (!node->isNumberConstant()) |
| 71 | return false; |
| 72 | double value = node->asNumber(); |
| 73 | return (value || 1.0 / value > 0.0); |
| 74 | } |
| 75 | |
| 76 | bool isNotPosZero(Node* node) |
| 77 | { |
| 78 | if (!node->isNumberConstant()) |
| 79 | return false; |
| 80 | double value = node->asNumber(); |
| 81 | return (value || 1.0 / value < 0.0); |
| 82 | } |
| 83 | |
| 84 | // Tests if the absolute value is strictly less than the power of two. |
| 85 | template<int power> |
| 86 | bool isWithinPowerOfTwoForConstant(Node* node) |
| 87 | { |
| 88 | JSValue immediateValue = node->asJSValue(); |
| 89 | if (!immediateValue.isNumber()) |
| 90 | return false; |
| 91 | double immediate = immediateValue.asNumber(); |
| 92 | return immediate > -(static_cast<int64_t>(1) << power) && immediate < (static_cast<int64_t>(1) << power); |
| 93 | } |
| 94 | |
| 95 | template<int power> |
| 96 | bool isWithinPowerOfTwoNonRecursive(Node* node) |
| 97 | { |
| 98 | if (!node->isNumberConstant()) |
| 99 | return false; |
| 100 | return isWithinPowerOfTwoForConstant<power>(node); |
| 101 | } |
| 102 | |
| 103 | template<int power> |
| 104 | bool isWithinPowerOfTwo(Node* node) |
| 105 | { |
| 106 | switch (node->op()) { |
| 107 | case DoubleConstant: |
| 108 | case JSConstant: |
| 109 | case Int52Constant: { |
| 110 | return isWithinPowerOfTwoForConstant<power>(node); |
| 111 | } |
| 112 | |
| 113 | case ValueBitAnd: |
| 114 | case ArithBitAnd: { |
| 115 | if (power > 31) |
| 116 | return true; |
| 117 | |
| 118 | return isWithinPowerOfTwoNonRecursive<power>(node->child1().node()) |
| 119 | || isWithinPowerOfTwoNonRecursive<power>(node->child2().node()); |
| 120 | } |
| 121 | |
| 122 | case ArithBitOr: |
| 123 | case ArithBitXor: |
| 124 | case ValueBitOr: |
| 125 | case ValueBitXor: |
| 126 | case BitLShift: { |
| 127 | return power > 31; |
| 128 | } |
| 129 | |
| 130 | case BitRShift: |
| 131 | case BitURShift: { |
| 132 | if (power > 31) |
| 133 | return true; |
| 134 | |
| 135 | Node* shiftAmount = node->child2().node(); |
| 136 | if (!node->isNumberConstant()) |
| 137 | return false; |
| 138 | JSValue immediateValue = shiftAmount->asJSValue(); |
| 139 | if (!immediateValue.isInt32()) |
| 140 | return false; |
| 141 | return immediateValue.asInt32() > 32 - power; |
| 142 | } |
| 143 | |
| 144 | default: |
| 145 | return false; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | template<int power> |
| 150 | bool isWithinPowerOfTwo(Edge edge) |
| 151 | { |
| 152 | return isWithinPowerOfTwo<power>(edge.node()); |
| 153 | } |
| 154 | |
| 155 | bool mergeDefaultFlags(Node* node) |
| 156 | { |
| 157 | bool changed = false; |
| 158 | if (node->flags() & NodeHasVarArgs) { |
| 159 | for (unsigned childIdx = node->firstChild(); |
| 160 | childIdx < node->firstChild() + node->numChildren(); |
| 161 | childIdx++) { |
| 162 | if (!!m_graph.m_varArgChildren[childIdx]) |
| 163 | changed |= m_graph.m_varArgChildren[childIdx]->mergeFlags(NodeBytecodeUsesAsValue); |
| 164 | } |
| 165 | } else { |
| 166 | if (!node->child1()) |
| 167 | return changed; |
| 168 | changed |= node->child1()->mergeFlags(NodeBytecodeUsesAsValue); |
| 169 | if (!node->child2()) |
| 170 | return changed; |
| 171 | changed |= node->child2()->mergeFlags(NodeBytecodeUsesAsValue); |
| 172 | if (!node->child3()) |
| 173 | return changed; |
| 174 | changed |= node->child3()->mergeFlags(NodeBytecodeUsesAsValue); |
| 175 | } |
| 176 | return changed; |
| 177 | } |
| 178 | |
| 179 | void propagate(Node* node) |
| 180 | { |
| 181 | NodeFlags flags = node->flags() & NodeBytecodeBackPropMask; |
| 182 | |
| 183 | switch (node->op()) { |
| 184 | case GetLocal: { |
| 185 | VariableAccessData* variableAccessData = node->variableAccessData(); |
| 186 | flags &= ~NodeBytecodeUsesAsInt; // We don't care about cross-block uses-as-int. |
| 187 | m_changed |= variableAccessData->mergeFlags(flags); |
| 188 | break; |
| 189 | } |
| 190 | |
| 191 | case SetLocal: { |
| 192 | VariableAccessData* variableAccessData = node->variableAccessData(); |
| 193 | if (!variableAccessData->isLoadedFrom()) |
| 194 | break; |
| 195 | flags = variableAccessData->flags(); |
| 196 | RELEASE_ASSERT(!(flags & ~NodeBytecodeBackPropMask)); |
| 197 | flags |= NodeBytecodeUsesAsNumber; // Account for the fact that control flow may cause overflows that our modeling can't handle. |
| 198 | node->child1()->mergeFlags(flags); |
| 199 | break; |
| 200 | } |
| 201 | |
| 202 | case Flush: { |
| 203 | VariableAccessData* variableAccessData = node->variableAccessData(); |
| 204 | m_changed |= variableAccessData->mergeFlags(NodeBytecodeUsesAsValue); |
| 205 | break; |
| 206 | } |
| 207 | |
| 208 | case MovHint: |
| 209 | case Check: |
| 210 | case CheckVarargs: |
| 211 | break; |
| 212 | |
| 213 | case ValueBitNot: |
| 214 | case ArithBitNot: { |
| 215 | flags |= NodeBytecodeUsesAsInt; |
| 216 | flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeUsesAsOther); |
| 217 | flags &= ~NodeBytecodeUsesAsArrayIndex; |
| 218 | node->child1()->mergeFlags(flags); |
| 219 | break; |
| 220 | } |
| 221 | |
| 222 | case ArithBitAnd: |
| 223 | case ArithBitOr: |
| 224 | case ArithBitXor: |
| 225 | case ValueBitAnd: |
| 226 | case ValueBitOr: |
| 227 | case ValueBitXor: |
| 228 | case BitRShift: |
| 229 | case BitLShift: |
| 230 | case BitURShift: |
| 231 | case ArithIMul: { |
| 232 | flags |= NodeBytecodeUsesAsInt; |
| 233 | flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeUsesAsOther); |
| 234 | flags &= ~NodeBytecodeUsesAsArrayIndex; |
| 235 | node->child1()->mergeFlags(flags); |
| 236 | node->child2()->mergeFlags(flags); |
| 237 | break; |
| 238 | } |
| 239 | |
| 240 | case StringCharCodeAt: { |
| 241 | node->child1()->mergeFlags(NodeBytecodeUsesAsValue); |
| 242 | node->child2()->mergeFlags(NodeBytecodeUsesAsValue | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
| 243 | break; |
| 244 | } |
| 245 | |
| 246 | case StringSlice: { |
| 247 | node->child1()->mergeFlags(NodeBytecodeUsesAsValue); |
| 248 | node->child2()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
| 249 | if (node->child3()) |
| 250 | node->child3()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
| 251 | break; |
| 252 | } |
| 253 | |
| 254 | case ArraySlice: { |
| 255 | m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue); |
| 256 | |
| 257 | if (node->numChildren() == 2) |
| 258 | m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsValue); |
| 259 | else if (node->numChildren() == 3) { |
| 260 | m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
| 261 | m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsValue); |
| 262 | } else if (node->numChildren() == 4) { |
| 263 | m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
| 264 | m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
| 265 | m_graph.varArgChild(node, 3)->mergeFlags(NodeBytecodeUsesAsValue); |
| 266 | } |
| 267 | break; |
| 268 | } |
| 269 | |
| 270 | |
| 271 | case UInt32ToNumber: { |
| 272 | node->child1()->mergeFlags(flags); |
| 273 | break; |
| 274 | } |
| 275 | |
| 276 | case ValueAdd: { |
| 277 | if (isNotNegZero(node->child1().node()) || isNotNegZero(node->child2().node())) |
| 278 | flags &= ~NodeBytecodeNeedsNegZero; |
| 279 | if (node->child1()->hasNumericResult() || node->child2()->hasNumericResult() || node->child1()->hasNumberResult() || node->child2()->hasNumberResult()) |
| 280 | flags &= ~NodeBytecodeUsesAsOther; |
| 281 | if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2())) |
| 282 | flags |= NodeBytecodeUsesAsNumber; |
| 283 | if (!m_allowNestedOverflowingAdditions) |
| 284 | flags |= NodeBytecodeUsesAsNumber; |
| 285 | |
| 286 | node->child1()->mergeFlags(flags); |
| 287 | node->child2()->mergeFlags(flags); |
| 288 | break; |
| 289 | } |
| 290 | |
| 291 | case ArithAdd: { |
| 292 | flags &= ~NodeBytecodeUsesAsOther; |
| 293 | if (isNotNegZero(node->child1().node()) || isNotNegZero(node->child2().node())) |
| 294 | flags &= ~NodeBytecodeNeedsNegZero; |
| 295 | if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2())) |
| 296 | flags |= NodeBytecodeUsesAsNumber; |
| 297 | if (!m_allowNestedOverflowingAdditions) |
| 298 | flags |= NodeBytecodeUsesAsNumber; |
| 299 | |
| 300 | node->child1()->mergeFlags(flags); |
| 301 | node->child2()->mergeFlags(flags); |
| 302 | break; |
| 303 | } |
| 304 | |
| 305 | case ArithClz32: { |
| 306 | flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeUsesAsOther | ~NodeBytecodeUsesAsArrayIndex); |
| 307 | flags |= NodeBytecodeUsesAsInt; |
| 308 | node->child1()->mergeFlags(flags); |
| 309 | break; |
| 310 | } |
| 311 | |
| 312 | case ArithSub: { |
| 313 | flags &= ~NodeBytecodeUsesAsOther; |
| 314 | if (isNotNegZero(node->child1().node()) || isNotPosZero(node->child2().node())) |
| 315 | flags &= ~NodeBytecodeNeedsNegZero; |
| 316 | if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2())) |
| 317 | flags |= NodeBytecodeUsesAsNumber; |
| 318 | if (!m_allowNestedOverflowingAdditions) |
| 319 | flags |= NodeBytecodeUsesAsNumber; |
| 320 | |
| 321 | node->child1()->mergeFlags(flags); |
| 322 | node->child2()->mergeFlags(flags); |
| 323 | break; |
| 324 | } |
| 325 | |
| 326 | case ArithNegate: { |
| 327 | flags &= ~NodeBytecodeUsesAsOther; |
| 328 | |
| 329 | node->child1()->mergeFlags(flags); |
| 330 | break; |
| 331 | } |
| 332 | |
| 333 | case ValueMul: |
| 334 | case ArithMul: { |
| 335 | // As soon as a multiply happens, we can easily end up in the part |
| 336 | // of the double domain where the point at which you do truncation |
| 337 | // can change the outcome. So, ArithMul always forces its inputs to |
| 338 | // check for overflow. Additionally, it will have to check for overflow |
| 339 | // itself unless we can prove that there is no way for the values |
| 340 | // produced to cause double rounding. |
| 341 | |
| 342 | if (!isWithinPowerOfTwo<22>(node->child1().node()) |
| 343 | && !isWithinPowerOfTwo<22>(node->child2().node())) |
| 344 | flags |= NodeBytecodeUsesAsNumber; |
| 345 | |
| 346 | node->mergeFlags(flags); |
| 347 | |
| 348 | flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero; |
| 349 | flags &= ~NodeBytecodeUsesAsOther; |
| 350 | |
| 351 | node->child1()->mergeFlags(flags); |
| 352 | node->child2()->mergeFlags(flags); |
| 353 | break; |
| 354 | } |
| 355 | |
| 356 | case ValueDiv: |
| 357 | case ArithDiv: { |
| 358 | flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero; |
| 359 | flags &= ~NodeBytecodeUsesAsOther; |
| 360 | |
| 361 | node->child1()->mergeFlags(flags); |
| 362 | node->child2()->mergeFlags(flags); |
| 363 | break; |
| 364 | } |
| 365 | |
| 366 | case ValueMod: |
| 367 | case ArithMod: { |
| 368 | flags |= NodeBytecodeUsesAsNumber; |
| 369 | flags &= ~NodeBytecodeUsesAsOther; |
| 370 | |
| 371 | node->child1()->mergeFlags(flags); |
| 372 | node->child2()->mergeFlags(flags & ~NodeBytecodeNeedsNegZero); |
| 373 | break; |
| 374 | } |
| 375 | |
| 376 | case GetByVal: { |
| 377 | m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue); |
| 378 | m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
| 379 | break; |
| 380 | } |
| 381 | |
| 382 | case NewTypedArray: |
| 383 | case NewArrayWithSize: { |
| 384 | // Negative zero is not observable. NaN versus undefined are only observable |
| 385 | // in that you would get a different exception message. So, like, whatever: we |
| 386 | // claim here that NaN v. undefined is observable. |
| 387 | node->child1()->mergeFlags(NodeBytecodeUsesAsInt | NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsArrayIndex); |
| 388 | break; |
| 389 | } |
| 390 | |
| 391 | case StringCharAt: { |
| 392 | node->child1()->mergeFlags(NodeBytecodeUsesAsValue); |
| 393 | node->child2()->mergeFlags(NodeBytecodeUsesAsValue | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
| 394 | break; |
| 395 | } |
| 396 | |
| 397 | case ToString: |
| 398 | case CallStringConstructor: { |
| 399 | node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther); |
| 400 | break; |
| 401 | } |
| 402 | |
| 403 | case ToPrimitive: |
| 404 | case ToNumber: { |
| 405 | node->child1()->mergeFlags(flags); |
| 406 | break; |
| 407 | } |
| 408 | |
| 409 | case CompareLess: |
| 410 | case CompareLessEq: |
| 411 | case CompareGreater: |
| 412 | case CompareGreaterEq: |
| 413 | case CompareBelow: |
| 414 | case CompareBelowEq: |
| 415 | case CompareEq: |
| 416 | case CompareStrictEq: { |
| 417 | node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther); |
| 418 | node->child2()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther); |
| 419 | break; |
| 420 | } |
| 421 | |
| 422 | case PutByValDirect: |
| 423 | case PutByVal: { |
| 424 | m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue); |
| 425 | m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
| 426 | m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsValue); |
| 427 | break; |
| 428 | } |
| 429 | |
| 430 | case Switch: { |
| 431 | SwitchData* data = node->switchData(); |
| 432 | switch (data->kind) { |
| 433 | case SwitchImm: |
| 434 | // We don't need NodeBytecodeNeedsNegZero because if the cases are all integers |
| 435 | // then -0 and 0 are treated the same. We don't need NodeBytecodeUsesAsOther |
| 436 | // because if all of the cases are integers then NaN and undefined are |
| 437 | // treated the same (i.e. they will take default). |
| 438 | node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsInt); |
| 439 | break; |
| 440 | case SwitchChar: { |
| 441 | // We don't need NodeBytecodeNeedsNegZero because if the cases are all strings |
| 442 | // then -0 and 0 are treated the same. We don't need NodeBytecodeUsesAsOther |
| 443 | // because if all of the cases are single-character strings then NaN |
| 444 | // and undefined are treated the same (i.e. they will take default). |
| 445 | node->child1()->mergeFlags(NodeBytecodeUsesAsNumber); |
| 446 | break; |
| 447 | } |
| 448 | case SwitchString: |
| 449 | // We don't need NodeBytecodeNeedsNegZero because if the cases are all strings |
| 450 | // then -0 and 0 are treated the same. |
| 451 | node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther); |
| 452 | break; |
| 453 | case SwitchCell: |
| 454 | // There is currently no point to being clever here since this is used for switching |
| 455 | // on objects. |
| 456 | mergeDefaultFlags(node); |
| 457 | break; |
| 458 | } |
| 459 | break; |
| 460 | } |
| 461 | |
| 462 | case Identity: |
| 463 | // This would be trivial to handle but we just assert that we cannot see these yet. |
| 464 | RELEASE_ASSERT_NOT_REACHED(); |
| 465 | break; |
| 466 | |
| 467 | // Note: ArithSqrt, ArithUnary and other math intrinsics don't have special |
| 468 | // rules in here because they are always followed by Phantoms to signify that if the |
| 469 | // method call speculation fails, the bytecode may use the arguments in arbitrary ways. |
| 470 | // This corresponds to that possibility of someone doing something like: |
| 471 | // Math.sin = function(x) { doArbitraryThingsTo(x); } |
| 472 | |
| 473 | default: |
| 474 | mergeDefaultFlags(node); |
| 475 | break; |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | bool m_allowNestedOverflowingAdditions; |
| 480 | bool m_changed; |
| 481 | }; |
| 482 | |
| 483 | bool performBackwardsPropagation(Graph& graph) |
| 484 | { |
| 485 | return runPhase<BackwardsPropagationPhase>(graph); |
| 486 | } |
| 487 | |
| 488 | } } // namespace JSC::DFG |
| 489 | |
| 490 | #endif // ENABLE(DFG_JIT) |
| 491 | |
| 492 | |